Abstract

Reed valves are a type of check valve commonly found in a wide range of applications including air compressors, internal combustion engines, musical instruments, and even the human heart. While reed valves have been studied extensively in these applications, published research on the modeling and application of reed valves in hydraulic systems is sparse. Because the spring and mass components of a reed valve are contained in a single element, it is light and compact compared to traditional disk, poppet, or ball style check valves. These advantages make reed valves promising for use in high-frequency applications such as piston pumps, switch-mode hydraulics, and digital hydraulics. Furthermore, the small size and fast response of reed valves provide an opportunity to design pumps capable of operating at higher speeds and with lower dead volumes, thus increasing efficiency and power density. In this paper, a modeling technique for reed valves is presented and validated in a hydraulic piston pump test bed. Excellent agreement between modeled and experimentally measured reed valve opening is demonstrated. Across the range of experimental conditions, the model predicts the pump delivery with an error typically less than 1% with a maximum error of 2.2%.

References

References
1.
Battistoni
,
M.
,
Grimaldi
,
C. N.
,
Baudille
,
R.
,
Fiaccavento
,
M.
, and
Marcacci
,
M.
,
2005
, “
Development of a Model for the Simulation of a Reed Valve Based Secondary Air Injection System for SI Engines
,”
SAE
Paper No. 2005-01-0224.10.4271/2005-01-0224
2.
Dave
,
A.
,
Siddiqui
,
A.
,
Probst
,
D.
, and
Hampson
,
G. J.
,
2004
, “
Development of a Reed Valve Model for Engine Simulations for Two-Stroke Engines
,”
SAE
Paper No. 2004-01-1455.10.4271/2004-01-1455
3.
Zeng
,
Y.
,
Strauss
,
S.
,
Lucier
,
P.
, and
Craft
,
T.
,
2004
, “
Predicting and Optimizing Two-Stroke Engine Performance Using Multidimensional CFD
,”
SAE
Paper No. 2004-32-0039.10.4271/2004-32-0039
4.
Rothbauer
,
R. J.
,
Grasberger
,
G.
,
Abidin
,
Z.
, and
Albauer
,
R. A.
,
2007
, “
Reed Valve, Crankcase and Exhaust Models Coupled to 3D Fluid Domains for the Predictive CFD Simulation
,”
SAE
Paper No. 2007-32-0030.10.4271/2007-32-0030
5.
Angeletti
,
A.
,
Biancolini
,
M.
,
Costa
,
E.
, and
Urbinati
,
M.
,
2009
, “
Optimisation of Reed valves dynamics by Means of Fluid Structure Interaction Modeling
,”
Fourth European Automotive Simulation Conference
, Munich, Germany, July 6–7.https://www.researchgate.net/publication/228416770_Optimisation_of_reed_valves_dynamics_by_means_of_Fluid_Structure_Interaction_Modelling
6.
Jajcevic
,
D.
,
Almbauer
,
R.
,
Schmidt
,
S.
,
Glinsner
,
K.
, and
Fitl
,
M.
,
2010
, “
Reed Valve CFD Simulation of a 2-Stroke Engine Using a 2D Model Including the Complete Engine Geometry
,”
SAE Int. J. Engines
,
3
(
2
), pp.
448
461
.10.4271/2010-32-0015
7.
Myers
,
M. L.
,
1984
,
A Study of Reed Valves
,
University of Wisconsin–Madison
, Madison, WI.
8.
Elson
,
J.
,
Soedel
,
W.
, and
Cohen
,
R.
,
1976
, “
A General Method for Simulating the Flow Dependent Nonlinear Vibrations of Compressor Reed Valves
,”
ASME J. Eng. Ind.
,
98
(
3
), pp.
930
934
.10.1115/1.3439054
9.
Pereira
,
E. L.
, and
Deschamps
,
C. J.
,
2011
, “
Influence of Piston on Effective Areas of Reed-Type Valves of Small Reciprocating Compressors
,”
HVACR Res.
,
17
(
2
), pp.
218
230
.10.1080/10789669.2011.566463
10.
Venkatesan
,
J.
,
Nagarajan
,
G.
,
Seeniraj
,
R.
, and
Murugan
,
R.
,
2010
, “
Experimental Validation of a Mathematical Model of a Reed-Valve Reciprocating Air Compressor From an Automotive-Braking System
,”
Int. J. Autom. Technol.
,
11
(
3
), pp.
317
322
.10.1007/s12239-010-0039-8
11.
Tarnopolsky
,
A. Z.
,
Fletcher
,
N. H.
, and
Lai
,
J.
,
2000
, “
Oscillating Reed Valves—An Experimental Study
,”
J. Acoust. Soc. Am.
,
108
(
1
), pp.
400
406
.10.1121/1.429473
12.
Yudell
,
A. C.
, and
Van de Ven
,
J. D.
,
2017
, “
Soft Switching in Switched Inertance Hydraulic Circuits
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
12
), p.
121007
.10.1115/1.4036887
13.
Rannow
,
M. B.
, and
Li
,
P. Y.
,
2009
, “
Soft Switching Approach to Reducing Transition Losses in an On/Off Hydraulic Valve
,”
ASME
Paper No. DSCC2009-2617.10.1115/DSCC2009-2617
14.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
, Hoboken, NJ.
15.
Knutson
,
A. L.
, and
Van de Ven
,
J. D.
,
2016
, “
Modelling and Experimental Validation of the Displacement of a Check Valve in a Hydraulic Piston Pump
,”
Int. J. Fluid Power
,
17
(
2
), pp.
114
124
.10.1080/14399776.2016.1160718
16.
Leati
,
E.
,
Gradl
,
C.
, and
Scheidl
,
R.
,
2016
, “
Modeling of a Fast Plate Type Hydraulic Check Valve
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
6
), p.
061002
.10.1115/1.4032826
17.
Labuschagne
,
A.
,
van Rensburg
,
N. J.
, and
Van der Merwe
,
A.
,
2009
, “
Comparison of Linear Beam Theories
,”
Math. Comput. Modell.
,
49
(
1–2
), pp.
20
30
.10.1016/j.mcm.2008.06.006
18.
Naguleswaran
,
S.
,
2002
, “
Natural Frequencies, Sensitivity and Mode Shape Details of an Euler–Bernoulli Beam With One-Step Change in Cross-Section and With Ends on Classical Supports
,”
J. Sound Vib.
,
252
(
4
), pp.
751
767
.10.1006/jsvi.2001.3743
19.
Knutson
,
A. L.
, and
Van de Ven
,
J. D.
,
2016
, “
Modeling and Experimental Validation of a Reed Check Valve for Hydraulic Applications
,”
ASME
Paper No. FPMC2016-1768.10.1115/FPMC2016-1768
20.
Knutson
,
A.
,
2016
, “
Modeling and Experimental Validation of Disc and Reed Style Check Valves for Hydraulic Applications
,”
Ph.D. thesis
,
University of Minnesota
, Minneapolis, MN.https://conservancy.umn.edu/handle/11299/185082
21.
Cho
,
B.-H.
,
Lee
,
H.-W.
, and
Oh
,
J.-S.
,
2000
, “
Estimation Technique of Air Content in Automatic Transmission Fluid by Measuring Effective Bulk Modulus
,”
SAE
Paper No. 2000-05-0107.https://www.sae.org/publications/technical-papers/content/2000-05-0107/#:~:text=Estimation%20technique%20of%20air%20content%20in%20automatic%20transmission%20fluid%20by,and%20sometimes%20destroys%20the%20stability
22.
Van de Ven
,
J. D.
,
2013
, “
On Fluid Compressibility in Switch-Mode Hydraulic Circuits—Part I: Modeling and Analysis
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
2
), p.
021013
.10.1115/1.4023062
23.
Peterson
,
J. P.
, and
Peterson
,
R. B.
,
2006
, “
Laser Triangulation for Liquid Film Thickness Measurements Through Multiple Interfaces
,”
Appl. Optics
,
45
(
20
), pp.
4916
4926
.10.1364/AO.45.004916
24.
Yudell
,
A. C.
, and
Van de Ven
,
J. D.
,
2015
, “
Predicting Solenoid Valve Spool Displacement Through Current Analysis
,”
Int. J. Fluid Power
,
16
(
3
), pp.
133
140
.10.1080/14399776.2015.1068549
25.
Wu
,
D.
,
Burton
,
R.
, and
Schoenau
,
G.
,
2002
, “
An Empirical Discharge Coefficient Model for Orifice Flow
,”
Int. J. Fluid Power
,
3
(
3
), pp.
13
19
.10.1080/14399776.2002.10781143
26.
Yudell
,
A. C.
, and
Van de Ven
,
J. D.
,
2017
, “
Experimental Validation of a Time Domain Cavitation Model for Switched Inertance Circuits
,”
ASME
Paper No. FPMC2017-4281.10.1115/FPMC2017-4281
You do not currently have access to this content.