Abstract

In this paper, a trajectory tracking control scheme for a quadrotor unmanned aerial vehicle (UAV) under unknown external disturbance and input saturation is developed. This scheme includes the position control system and attitude control one, in which the attitude control system is further divided into the fast loop for angular velocity and the slow one for attitude angle based on time-scale separation principle. Then, an input constrained dynamic surface control scheme combined with a disturbance observer is designed to achieve the total thrust, desired roll, and pitch angle in the position control system. For the coupled attitude system, a dynamic surface control scheme together with generalized model predictive controller (GMPC) is proposed to tackle both the fast loop system and the slow one. Since the unknown external disturbance and input saturation are considered, a sliding mode disturbance observer (SMDO) is further designed to achieve the strong robustness. Finally, some simulation results are presented to show robustness and effectiveness of our proposed tracking scheme.

References

References
1.
Nkemdilim
,
A.
, and
Matthew
,
C.
,
2016
, “
Decentralized Approaches to Antiwindup Design With Application to Quadrotor Unmanned Aerial Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
24
(
6
), pp.
1980
1992
.10.1109/TCST.2016.2521799
2.
Chen
,
M.
,
Ren
,
B.
,
Wu
,
Q.
, and
Jiang
,
C.
,
2015
, “
Anti-Disturbance Control of Hypersonic Flight Vehicles With Input Saturation Using Disturbance Observer
,”
Sci. China Inf. Sci.
,
58
(
7
), pp.
1
120
.10.1007/s11432-015-5337-3
3.
Zhong
,
Y.
,
Zhang
,
Y.
,
Zhang
,
W.
,
Zuo
,
J.
, and
Zhan
,
H.
,
2018
, “
Robust Actuator Fault Detection and Diagnosis for a Quadrotor UAV With External Disturbances
,”
IEEE Access
,
6
(
7
), pp.
48169
48180
.10.1109/ACCESS.2018.2867574
4.
Yang
,
J.
,
Li
,
S.
, and
Yu
,
X.
,
2013
, “
Sliding-Mode Control for Systems With Mismatched Uncertainties Via a Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
60
(
1
), pp.
160
169
.10.1109/TIE.2012.2183841
5.
Xiao
,
B.
, and
Yin
,
S.
,
2017
, “
A New Disturbance Attenuation Control Scheme for Quadrotor Unmanned Aerial Vehicles
,”
IEEE Trans. Ind. Inf.
,
13
(
6
), pp.
2922
2932
.10.1109/TII.2017.2682900
6.
Floquet
,
T.
,
Barbot
,
J. P.
,
Perruquetti
,
W.
, and
Djemai
,
M.
,
2004
, “
On the Robust Fault Detection Via a Sliding Mode Disturbance Observer
,”
Int. J. Control
,
77
(
7
), pp.
622
629
.10.1080/00207170410001699030
7.
Islam
,
S.
,
Liu
,
P. X.
, and
El Saddik
,
A.
,
2015
, “
Robust Control of Four-Rotor Unmanned Aerial Vehicle With Disturbance Uncertainty
,”
IEEE Trans. Ind. Electron.
,
62
(
3
), pp.
1563
1571
.10.1109/TIE.2014.2365441
8.
Ramirez-Rodriguez
,
H.
,
Parra-Vega
,
V.
,
Sanchez-Orta
,
A.
, and
Garcia-Salazar
,
O.
,
2014
, “
Robust Backstepping Control Based on Integral Sliding Modes for Tracking of Quadrotors
,”
J. Intell. Rob. Syst.
,
73
(
1–4
), pp.
51
66
.10.1007/s10846-013-9909-4
9.
Liu
,
H.
, and
Li
,
D.
,
2018
, “
Robust Three-Loop Trajectory Tracking Control for Quadrotors With Multiple Uncertainties
,”
IEEE Trans. Ind. Electron.
,
63
(
4
), pp.
2263
2274
.10.1109/TIE.2016.2514339
10.
Zhao
,
B.
,
Xian
,
B.
,
Zhang
,
Y.
, and
Zhang
,
X.
,
2015
, “
Nonlinear Robust Adaptive Tracking Control of a Quadrotor UAV Via Immersion and Invariance Methodology
,”
IEEE Trans. Ind. Electron.
,
62
(
5
), pp.
2891
2892
.10.1109/TIE.2014.2364982
11.
Alexis
,
K.
, and
Nikolakopoulos
,
G.
,
2012
, “
Model Predictive Quadrotor Control: Attitude, Altitude and Position Experimental Studies
,”
IET Control Theory Appl.
,
6
(
12
), pp.
1
16
.10.1049/iet-cta.2011.0348
12.
Chen
,
W.-H.
,
Ballance
,
D. J.
, and
Gawthrop
,
P. J.
,
2003
, “
Optimal Control of Nonlinear Systems: A Predictive Control Approach
,”
Automatica
,
39
(
4
), pp.
633
641
.10.1016/S0005-1098(02)00272-8
13.
Gao
,
Y.-F.
,
Sun
,
X.-M.
,
Wen
,
C.
, and
Wang
,
W.
,
2017
, “
Adaptive Tracking Control for a Class of Stochastic Uncertain Nonlinear Systems With Input Saturation
,”
IEEE Trans. Autom. Control
,
62
(
5
), pp.
2498
2504
.10.1109/TAC.2016.2600340
14.
Min
,
H.
,
Xu
,
S.
,
Ma
,
Q.
,
Zhang
,
B.
, and
Zhang
,
Z.
,
2018
, “
Composite-Observer-Based Output-Feedback Control for Nonlinear Time-Delay Systems With Input Saturation and Its Application
,”
IEEE Trans. Ind. Electron.
,
65
(
7
), pp.
5856
5863
.10.1109/TIE.2017.2784347
15.
Wang
,
X.
,
Su
,
H.
,
Chen
,
M. Z. Q.
, and
Wang
,
X.
,
2018
, “
Observer-Based Robust Coordinated Control of Multiagent Systems With Input Saturation
,”
IEEE Trans. Neural Networks Learn. Syst.
,
29
(
5
), pp.
1933
1946
.10.1109/TNNLS.2017.2690322
16.
Zhai
,
D.
, and
Xia
,
Y.
,
2016
, “
Adaptive Control for Teleoperation System With Varying Time Delays and Input Saturation Constraints
,”
IEEE Trans. Neural Networks Learn. Syst.
,
63
(
11
), pp.
6921
6929
.10.1109/TIE.2016.2583199
17.
Ma
,
X.
,
Sun
,
F.
,
Li
,
H.
, and
He
,
B.
,
2017
, “
Attitude Control of Rigid Body With Inertia Uncertainty and Saturation Input
,”
Tsinghua Sci. Technol.
,
22
(
1
), pp.
83
91
.10.1109/TST.2017.7830898
18.
Gu
,
W.
,
Yao
,
J.
,
Yao
,
Z.
, and
Zheng
,
J.
,
2018
, “
Robust Adaptive Control of Hydraulic System With Input Saturation and Valve Dead-Zone
,”
IEEE Access
,
6
, pp.
53521
53532
.10.1109/ACCESS.2018.2871069
19.
Wen
,
C.
,
Zhou
,
J.
,
Liu
,
Z.
, and
Su
,
H.
,
2011
, “
Robust Adaptive Control of Uncertain Nonlinear Systems in the Presence of Input Saturation and External Disturbance
,”
IEEE Trans. Autom. Control
,
56
(
7
), pp.
1672
1678
.10.1109/TAC.2011.2122730
20.
Zhou
,
Q.
,
Shi
,
P.
,
Tian
,
Y.
, and
Wang
,
M.
,
2015
, “
Approximation-Based Adaptive Tracking Control for MIMO Nonlinear Systems With Input Saturation
,”
IEEE Trans. Cybern.
,
45
(
10
), pp.
2119
2128
.10.1109/TCYB.2014.2365778
21.
Wang
,
X.
,
Li
,
S.
,
Yu
,
X.
, and
Yang
,
J.
,
2017
, “
Distributed Active Anti-Disturbance Consensus for Leader-Follower Higher-Order Multi-Agent Systems With Mismatched Disturbances
,”
IEEE Trans. Autom. Control
,
62
(
11
), pp.
5795
5801
.10.1109/TAC.2016.2638966
22.
Muramatsu
,
H.
, and
Katsura
,
S.
,
2018
, “
An Adaptive Periodic-Disturbance Observer for Periodic-Disturbance Suppression
,”
IEEE Trans. Ind. Inf.
,
14
(
10
), pp.
4446
4456
.10.1109/TII.2018.2804338
23.
Chen
,
M.
, and
Chen
,
C.
,
2007
, “
Robust Nonlinear Observer for Lipschitz Nonlinear Systems Subject to Disturbances
,”
IEEE Trans. Ind. Inf.
,
52
(
12
), pp.
2365
2369
.10.1109/TAC.2007.910724
24.
Chang
,
J.
,
2006
, “
Applying Discrete-Time Proportional Integral Observers for State and Disturbance Estimations
,”
IEEE Trans. Autom. Control
,
51
(
5
), pp.
814
818
.10.1109/TAC.2006.875019
25.
Zhou
,
L.
,
Che
,
Z.
, and
Yang
,
C.
,
2018
, “
Disturbance Observer-Based Integral Sliding Mode Control for Singularly Perturbed Systems With Mismatched Disturbances
,”
IEEE Access
,
6
, pp.
9854
9861
.10.1109/ACCESS.2018.2808477
26.
Shim
,
H.
, and
Liberzon
,
D.
,
2016
, “
Nonlinear Observers Robust to Measurement Disturbances in an ISS Sense
,”
IEEE Trans. Autom. Control
,
61
(
1
), pp.
48
61
.10.1109/TAC.2015.2423911
27.
Chen
,
M.
, and
Ge
,
S.
,
2015
, “
Adaptive Neural Output Feedback Control of Uncertain Nonlinear Systems With Unknown Hysteresis Using Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
62
(
12
), pp.
7706
7716
.10.1109/TIE.2015.2455053
28.
Chen
,
M.
,
Shi
,
P.
, and
Lim
,
C.-C.
,
2015
, “
Robust Constrained Control for MIMO Nonlinear Systems Based on Disturbance Observer
,”
IEEE Trans. Autom. Control
,
60
(
12
), pp.
3281
3286
.10.1109/TAC.2015.2450891
29.
Li
,
Y.
,
Lu
,
Z.
, and
Zhou
,
F.
,
2019
, “
Decentralized Trajectory Tracking Control for Modular and Reconfigurable Robots With Torque Sensor: Adaptive Terminal Sliding Control-Based Approach
,”
ASME. J. Dyn. Sys., Meas., Control
,
141
(
6
), p.
061003
.10.1115/1.4042550
30.
Wang
,
Z.
,
Su
,
Y.
, and
Zhang
,
L.
,
2017
, “
A New Nonsingular Terminal Sliding Mode Control for Rigid Spacecraft Attitude Tracking
,”
ASME. J. Dyn. Sys., Meas., Control
,
140
(
5
), p.
051006
.10.1115/1.4038094
31.
Chen
,
M.
,
Chen
,
S.-D.
, and
Wu
,
Q.-X.
,
2017
, “
Sliding Mode Control for a Class of Uncertain Nonlinear System Based on Disturbance Observer
,”
Int. J. Adaptive Control Signal Process.
,
31
(
7
), pp.
1003
64
.10.1002/acs.2744
32.
Kim
,
K.
,
2010
, “
Disturbance Observer for Estimating Higher Order Disturbances in Time Series Expansion
,”
IEEE Trans. Autom. Control
,
55
(
8
), pp.
1905
1911
.10.1109/TAC.2010.2049522
33.
Levant
,
A.
,
1998
, “
Robust Exact Differentiation Via Sliding Mode Technique
,”
Automatica
,
34
(
3
), pp.
379
384
.10.1016/S0005-1098(97)00209-4
34.
Guo
,
Y.
,
Jiang
,
B.
, and
Zhang
,
Y.
,
2018
, “
A Novel Robust Attitude Control for Quadrotor Aircraft Subject to Actuator Faults and Wind Gusts
,”
AEEE/CAA J. Autimatica Sin.
,
5
(
1
), pp.
292
300
.10.1109/JAS.2017.7510679
35.
Solovyev
,
V.
,
2015
, “
Simulation of Wind Effect on a Quadrotor Flight
,”
ARPN J. Eng. Appl. Sci.
,
10
(
4
), pp.
1535
1538
.
36.
Ge
,
S. S.
, and
Wang
,
C.
,
2004
, “
Adaptive Neural Control of Uncertain MIMO Nonlinear Systems
,”
IEEE Trans. Neural Networks
,
15
(
3
), pp.
674
692
.10.1109/TNN.2004.826130
37.
Mousavi
,
S.
, and
Khayatian
,
A.
,
2011
, “
Dead Zone Model Based Adaptive Backstepping Control for a Class of Uncertain Saturated Systems
,”
Asian J. Control
, 18(4), pp. 1395–1405. 10.1002/asjc.1198
38.
Su
,
C. Y.
,
Wang
,
Q.
,
Chen
,
X.
, and
Rakheja
,
S.
,
2006
, “
Robust Adaptive Control of a Class of Nonlinear Systems Including Actuator Hysteresis With Prandtlishlinskii Presentations
,”
Automatica
,
42
(
5
), pp.
859
867
.10.1016/j.automatica.2006.01.018
39.
Chen
,
M.
,
Wu
,
Q.
, and
Cui
,
R. X.
,
2013
, “
Terminal Sliding Mode Tracking Control for a Class of SISO Uncertain Nonlinear Systems
,”
ISA Trans.
,
52
(
2
), pp.
198
206
.10.1016/j.isatra.2012.09.009
You do not currently have access to this content.