Abstract

This paper presents a study wherein we experimentally characterize the dynamics and control system of a lab-scale ocean kite, and then refine, validate, and extrapolate this model for use in a full-scale system. Ocean kite systems, which harvest tidal and ocean current resources through high-efficiency cross-current motion, enable energy extraction with an order of magnitude less material (and cost) than stationary systems with the same rated power output. However, an ocean kite represents a nascent technology that is characterized by relatively complex dynamics and requires sophisticated control algorithms. In order to characterize the dynamics and control of ocean kite systems rapidly, at a relatively low cost, the authors have developed a lab-scale, closed-loop prototyping environment for characterizing tethered systems, whereby 3D printed systems are tethered and flown in a water channel environment. While this system has been shown to be capable of yielding similar dynamic characteristics to some full-scale systems, there are also fundamental limitations to the geometric scales and flow speeds within the water channel environment, making many other real-world scenarios impossible to replicate from the standpoint of dynamic similarity. To address these scenarios, we show how the lab-scale framework is used to refine and validate a scalable dynamic model of a tethered system, which can then be extrapolated to full-scale operation. In this work, we present an extensive case study of this model refinement, validation, and extrapolation on an ocean kite system intended for operation in the Gulf Stream or similar current environments.

References

References
1.
Archer
,
C. L.
, and
Caldeira
,
K.
,
2008
, “
Atlas of High Altitude Wind Power
,”
Carnegie Institute for Science
,
Washington, DC
.
2.
Moodley
,
R.
,
Nthontho
,
M.
,
Chowdhury
,
S.
, and
Chowdhury
,
S.
,
2012
, “
A Technical and Economic Analysis of Energy Extraction From the Agulhas Current on the East Coast of South Africa
,”
IEEE Power and Energy Society General Meeting
,
San Diego, CA
, July 22–26, pp.
1
8
.10.1109/PESGM.2012.6344793
3.
Duerr
,
A. E.
, and
Dhanak
,
M. R.
,
2012
, “
An Assessment of the Hydrokinetic Energy Resource of the Florida Current
,”
IEEE J. Oceanic Eng.
,
37
(
2
), pp.
281
293
.10.1109/JOE.2012.2186347
4.
Landberg
,
M.
,
2012
, “
Submersible Plant
,” U.S. Patent No. 8,246,293.
5.
Coiro
,
D.
,
Troise
,
G.
,
Scherillo
,
F.
,
De Marco
,
A.
,
Calise
,
G.
, and
Bizzarrini
,
N.
,
2017
, “
Development, Deployment and Experimental Test on the Novel Tethered System GEM for Tidal Current Energy Exploitation
,”
Renewable Energy
,
114
, pp.
323
336
.10.1016/j.renene.2017.01.040
6.
Mademlis
,
G.
,
Liu
,
Y.
,
Chen
,
P.
, and
Singhroy
,
E.
,
2020
, “
Design of Maximum Power Point Tracking for Dynamic Power Response of Tidal Undersea Kite Systems
,”
IEEE Trans. Ind. Appl.
,
56
(
2
), pp.
2048
2060
.10.1109/TIA.2020.2966189
7.
Loyd
,
M. L.
,
1980
, “
Crosswind Kite Power (for Large-Scale Wind Power Production)
,”
J. Energy
,
4
(
3
), pp.
106
111
.10.2514/3.48021
8.
Vermillion
,
C.
,
Grunnagle
,
T.
,
Lim
,
R.
, and
Kolmanovsky
,
I.
,
2014
, “
Model-Based Plant Design and Hierarchical Control of a Prototype Lighter-Than-Air Wind Energy System, With Experimental Flight Test Results
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
531
542
.10.1109/TCST.2013.2263505
9.
Williams
,
P.
,
Lansdorp
,
B.
, and
Ockels
,
W.
,
2007
, “
Modeling and Control of a Kite on a Variable Length Flexible Inelastic Tether
,”
AIAA Paper No. 2007-6705
.10.2514/6.2007-6705
10.
Cobb
,
M. K.
,
Barton
,
K.
,
Fathy
,
H.
, and
Vermillion
,
C.
,
2020
, “
Iterative Learning-Based Path Optimization for Repetitive Path Planning, With Application to 3-D Crosswind Flight of Airborne Wind Energy Systems
,”
IEEE Trans. Control Syst. Technol.
,
28
(
4
), pp.
1447
1459
.10.1109/TCST.2019.2912345
11.
Olinger
,
D. J.
, and
Wang
,
Y.
,
2015
, “
Hydrokinetic Energy Harvesting Using Tethered Undersea Kites
,”
J. Renewable Sustainable Energy
,
7
(
4
), p.
043114
.10.1063/1.4926769
12.
Li
,
H.
,
Olinger
,
D. J.
, and
Demetriou
,
M. A.
,
2019
, “
Modeling and Control of Tethered Undersea Kites
,”
Ocean Eng.
,
190
, p.
106390
.10.1016/j.oceaneng.2019.106390
13.
Fagiano
,
L.
,
Huynh
,
K.
,
Bamieh
,
B.
, and
Khammash
,
M.
,
2013
, “
Sensor Fusion for Tethered Wings in Airborne Wind Energy
,”
American Control Conference
,
Washington, DC
, June 17–19, pp.
2884
2889
.10.1109/ACC.2013.6580272
14.
Fredette
,
R.
,
2015
, “
Scale-Model Testing of Tethered Undersea Kites for Power Generation
,”
Master's thesis
,
Worcester Polytechnic Institute
,
Worcester, MA
.https://digitalcommons.wpi.edu/etd-theses/903/
15.
Vermillion
,
C.
,
Glass
,
B.
, and
Szalai
,
B.
,
2014
, “
Development and Full-Scale Experimental Validation of a Rapid Prototyping Environment for Plant and Control Design of Airborne Wind Energy Systems
,”
ASME Paper No. DSCC2014-5907
.10.1115/DSCC2014-5907
16.
Vermillion
,
C.
,
Glass
,
B.
, and
Greenwood
,
S.
,
2014
, “
Evaluation of a Water Channel-Based Platform for Characterizing Aerostat Flight Dynamics: A Case Study on a Lighter-Than-Air Wind Energy System
,”
AIAA Paper No. 2014-2711
.10.2514/6.2014-2711
17.
Deodhar
,
N.
,
Vermillion
,
C.
, and
Tkacik
,
P.
,
2015
, “
A Case Study in Experimentally-Infused Plant and Controller Optimization for Airborne Wind Energy Systems
,”
American Control Conference
,
Chicago, IL
, July 1–3, pp.
2371
2376
.10.1109/ACC.2015.7171087
18.
Deodhar
,
N.
,
Bafandeh
,
A.
,
Deese
,
J.
,
Smith
,
B.
,
Muyimbwa
,
T.
,
Vermillion
,
C.
, and
Tkacik
,
P.
,
2017
, “
Laboratory-Scale Flight Characterization of a Multitethered Aerostat for Wind Energy Generation
,”
AIAA J.
,
55
(
6
), pp.
1823
1832
.10.2514/1.J054407
19.
Cobb
,
M.
,
Vermillion
,
C.
, and
Fathy
,
H.
,
2016
, “
Lab-Scale Experimental Crosswind Flight Control System Prototyping for an Airborne Wind Energy System
,”
ASME Paper No. DSCC2016-9737
.10.1115/DSCC2016-9737
20.
Cobb
,
M.
,
Deodhar
,
N.
, and
Vermillion
,
C.
,
2018
, “
Lab-Scale Experimental Characterization and Dynamic Scaling Assessment for Closed-Loop Crosswind Flight of Airborne Wind Energy Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
7
), p.
071005
.10.1115/1.4038650
21.
Siddiqui
,
A.
,
Ramaprabhu
,
P.
,
Deese
,
J.
, and
Vermillion
,
C.
,
2019
, “
Flight Dynamics and Control of a Farm of Tethered Energy Systems in a Turbulent Field
,”
ASME Paper No. DSCC2019-9168
.10.1115/DSCC2019-9168
22.
Fossen
,
T. I.
,
1994
,
Guidance and Control of Ocean Vehicles
,
Wiley
,
New York
.
23.
Meirovitch
,
L.
,
2010
,
Methods of Analytical Dynamics
,
Dover
,
New York
.
24.
Thomson
,
W. T.
,
1986
,
Introduction to Space Dynamics
,
Dover
,
New York
.
25.
Wendel
,
K.
,
1956
,
Hydrodynamic Masses and Hydrodynamic Moments of Inertia
,
MIT Libraries
,
Cambridge, MA
.
26.
Drela
,
M.
, and
Youngren
,
H.
,
2017
, “XFOIL”.
27.
Yoder
,
C. D.
,
Gemmer
,
T. R.
, and
Mazzoleni
,
A. P.
,
2019
, “
Modelling and Performance Analysis of a Tether and Sail-Based Trajectory Control System for Extra-Terrestrial Scientific Balloon Missions
,”
Acta Astronaut.
,
160
, pp.
527
537
.10.1016/j.actaastro.2018.12.030
28.
Rapp
,
S.
,
Schmehl
,
R.
,
Oland
,
E.
,
Smidt
,
S.
,
Haas
,
T.
, and
Meyers
,
J.
,
2019
, “
A Modular Control Architecture for Airborne Wind Energy Systems
,”
AIAA Paper No. 2019-1419
.10.2514/6.2019-1419
29.
Stewart
,
E. A.
,
2017
,
Design, Analysis, and Validation of a Free Surface Water Tunnel
,
North Carolina State University
,
Raleigh, NC
.
30.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst., Man, Cybern.
,
9
(
1
), pp.
62
66
.10.1109/TSMC.1979.4310076
31.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of International Conference on Neural Networks
, Vol.
4
,
Perth, WA
, Nov. 27–Dec. 1, pp.
1942
1948
.10.1109/ICNN.1995.488968
You do not currently have access to this content.