Abstract

In an active vibration isolation system using velocity feedback, the phase–lead due to high-pass filter and the phase–lag due to time delay limit the controller gain. This paper extends and applies a simple frequency range selector to increase the critical control gain. The selector uses the isolated mass's acceleration, velocity, and displacement and is tuned by two knobs. Our proposed approach has simple static switching law, suppresses both low and high frequency control, and does not add additional phase–lead or phase–lag. A simple expression of the effective gain is presented to give insight into the influence of two tuning knobs. Numerical simulations and a simple experiment are performed to illustrate the controller's effectiveness under harmonic and random disturbances.

References

References
1.
Rao
,
S. S.
,
2010
,
Mechanical Vibrations
,
Prentice Hall
, Upper Saddle River,
NJ
.
2.
Preumont
,
A.
,
2011
,
Vibration Control of Active Structures
,
Springer-Verlag
,
Berlin
.
3.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.10.1016/j.jsv.2008.01.014
4.
Lu
,
Z. Q.
,
Chen
,
L. Q.
,
Brennan
,
M. J.
,
Li
,
J. M.
, and
Ding
,
H.
,
2016
, “
The Characteristics of Vibration Isolation System With Damping and Stiffness Geometrically Nonlinear
,”
J. Phys.: Conf. Ser.
,
744
(
1
), p.
012115
.10.1088/1742-6596/744/1/012115
5.
Huang
,
X.
,
Sun
,
J.
,
Hua
,
H.
, and
Zhang
,
Z.
,
2016
, “
The Isolation Performance of Vibration Systems With General Velocity-Displacement-Dependent Nonlinear Damping Under Base Excitation: Numerical and Experimental Study
,”
Nonlinear Dyn.
,
85
(
2
), pp.
777
796
.10.1007/s11071-016-2722-4
6.
Mofidian
,
S. M. M.
, and
Bardaweel
,
H.
,
2018
, “
Displacement Transmissibility Evaluation of Vibration Isolation System Employing Nonlinear-Damping and Nonlinear-Stiffness Elements
,”
J. Vib. Control
,
24
(
18
), pp.
4247
4259
.10.1177/1077546317722702
7.
Ho
,
C.
,
Lang
,
Z. Q.
,
Sapiński
,
B.
, and
Billings
,
S. A.
,
2013
, “
Vibration Isolation Using Nonlinear Damping Implemented by a Feedback-Controlled MR Damper
,”
Smart Mater. Struct.
,
22
(
10
), p.
105010
.10.1088/0964-1726/22/10/105010
8.
Sun
,
X.
, and
Jing
,
X.
,
2015
, “
Multi-Direction Vibration Isolation With Quasi-Zero Stiffness by Employing Geometrical Nonlinearity
,”
Mech. Syst. Signal Process.
,
62–63
, pp.
149
163
.10.1016/j.ymssp.2015.01.026
9.
Liu
,
C.
,
Jing
,
X.
,
Daley
,
S.
, and
Li
,
F.
,
2015
, “
Recent Advances in Micro-Vibration Isolation
,”
Mech. Syst. Signal Process.
,
56–57
, pp.
55
80
.10.1016/j.ymssp.2014.10.007
10.
Sun
,
L. L.
,
Hansen
,
C. H.
, and
Doolan
,
C.
,
2015
, “
Evaluation of the Performance of a Passive–Active Vibration Isolation System
,”
Mech. Syst. Signal Process.
,
50–51
, pp.
480
497
.10.1016/j.ymssp.2014.05.008
11.
Kerber
,
F.
,
Hurlebaus
,
S.
,
Beadle
,
B. M.
, and
Stobener
,
U.
,
2007
, “
Control Concepts for an Active Vibration Isolation System
,”
Mech. Syst. Signal Process.
,
21
(
8
), pp.
3042
3059
.10.1016/j.ymssp.2007.04.003
12.
Hurlebaus
,
S.
, and
Gaul
,
L.
,
2006
, “
Smart Structure Dynamics
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
255
281
.10.1016/j.ymssp.2005.08.025
13.
Balas
,
M. J.
,
1979
, “
Direct Velocity Feedback Control of Large Space Structures
,”
J. Guid. Control
,
2
(
3
), pp.
252
253
.10.2514/3.55869
14.
Preumont
,
A.
,
2002
, “
An Introduction to Active Vibration Control
,”
Responsive Systems for Active Vibration Control
,
A.
Preumont
, ed.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
1
42
.
15.
Brennan
,
M. J.
,
Ananthaganeshan
,
K. A.
, and
Elliott
,
S. J.
,
2007
, “
Instabilities Due to Instrumentation Phase-Lead and Phase-Lag in the Feedback Control of a Simple Vibrating System
,”
J. Sound Vib.
,
304
(
3–5
), pp.
466
478
.10.1016/j.jsv.2007.01.046
16.
Agrawal
,
A. K.
, and
Yang
,
J. N.
,
1997
, “
Effect of Fixed Time Delay on Stability and Performance of Actively Controlled Civil Engineering Structures
,”
Earthquake Eng. Struct. Dyn.
,
26
(
11
), pp.
1169
1185
.10.1002/(SICI)1096-9845(199711)26:11<1169::AID-EQE702>3.0.CO;2-S
17.
Wang
,
M.
,
Li
,
X.
, and
Chen
,
X.
,
2017
, “
Active Hybrid Control Algorithm With Sky-Hook Damping and Lead-Lag Phase Compensation for Multi-DOFs Ultra-Low Frequency Active Vibration Isolation System
,”
Shock Vib.
,
2017
, p.
1861809
.10.1155/2017/1861809
18.
Yan
,
T. H.
,
Pu
,
H. Y.
,
Chen
,
X. D.
,
Li
,
Q.
, and
Xu
,
C.
,
2010
, “
Integrated Hybrid Vibration Isolator With Feedforward Compensation for Fast High-Precision Positioning X/Y Tables
,”
Meas. Sci. Technol.
,
21
(
6
), p.
065901
.10.1088/0957-0233/21/6/065901
19.
Saikumar
,
N.
,
Sinha
,
R. K.
, and
HosseinNia
,
S. H.
,
2019
, “
Constant in Gain Lead in Phase Element—Application in Precision Motion Control
,”
IEEE/ASME Trans. Mechatronics
,
24
(
3
), pp.
1176
1185
.10.1109/TMECH.2019.2909082
20.
van den Eijnden
,
S. J. A. M.
,
Knops
,
Y.
, and
Heertjes
,
M. F.
,
2018
, “
A Hybrid Integrator-Gain Based Low-Pass Filter for Nonlinear Motion Control
,”
2018 IEEE Conference on Control Technology and Applications
,
Copenhagen, Denmark
, Aug. 21–24, pp. 1108–1113.10.1109/CCTA.2018.8511092
21.
Savaresi
,
S. M.
,
Poussot-Vassal
,
C.
,
Spelta
,
C.
,
Sename
,
O.
, and
Dugard
,
L.
,
2010
,
Semi-Active Suspension Control Design for Vehicles
,
Butterworth-Heinemann
, Kidlington, Oxford, UK. 
22.
Savaresi
,
S.
, and
Spelta
,
C.
,
2009
, “
A Single Sensor Control Strategy for Semi-Active Suspension
,”
IEEE Trans. Control Syst. Technol.
,
17
(
1
), pp.
143
152
.10.1109/TCST.2008.906313
23.
Li
,
Z.
,
Sun
,
W.
, and
Gao
,
H.
,
2019
, “
Road-Holding-Oriented Control and Analysis of Semi-Active Suspension Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
141
(
10
), p.
101010
.10.1115/1.4043764
You do not currently have access to this content.