Abstract

In first stage, a machine learning (ML) was performed to predict in-cylinder pressure using both fuzzy logic (FL) and artificial neural networks (ANN) depending on the results of experimental studies in a spark ignition (SI) engine. In the ML phase, the experimental in-cylinder pressure data of SI engine was used. SI engine was operated at stoichiometric air–fuel mixture (φ = 1.0) at 1200, 1400, and 1600 rpm engine speeds. Six different ignition timings, ranging from 15 to 45 °CA, were used for each engine speed. Correlations (R2) between data from in-cylinder pressure obtained via FL and ANN models and data form experimental in-cylinder pressure were determined. R2 values over 0.995 were obtained at an ML stage of ANN model for all test conditions of the engine. However, R2 values were remained between range of 0.820–0.949 with the FL model for different engine speeds and ignition timings. In the second stage, in-cylinder pressure prediction was performed by using an ANN model for engine operating conditions where no experimental results were obtained. Furthermore, indicated mean effective pressure (IMEP) values were calculated by predicting in-cylinder pressure data for different engine operation conditions, and then compared with experimental IMEP values. The results show that the in-cylinder pressure and IMEP results estimated with the trained ANN model are fairly close to the experimental results. Moreover, it was found that using the trained ANN model, the ignition timing corresponding to the maximum brake torque (MBT) used in the engine management systems and engine studies could be determined with high accuracy.

References

References
1.
Tasdemir
,
S.
,
Saritas
,
I.
,
Ciniviz
,
M.
, and
Allahverd
,
N.
,
2011
, “
Artificial Neural Network and Fuzzy Expert System Comparison for Prediction of Performance and Emission Parameters on a Gasoline Engine
,”
Expert Syst. Appl.
,
38
, pp.
13912
13923
.10.1016/j.eswa.2011.04.198
2.
Canakci
,
M.
,
Ozsezen
,
A. N.
,
Arcaklioglu
,
E.
, and
Erdil
,
A.
,
2009
, “
Prediction of Performance and Exhaust Emissions of a Diesel Engine Fueled With Biodiesel Produced From Waste Frying Palm Oil
,”
Expert Syst. Appl.
,
36
(
5
), pp.
9268
9280
.10.1016/j.eswa.2008.12.005
3.
Shrivastava
,
N.
, and
Khan
,
Z. M.
,
2018
, “
Application of Soft Computing in the Field of Internal Combustion Engines: A Review
,”
Arch. Comput. Method. E
,
25
(
3
), pp.
707
726
.10.1007/s11831-017-9212-9
4.
Herawan
,
S. G.
,
Talib
,
K.
, and
Putra
,
A.
,
2018
, “
Prediction of Heat Energy From the Naturally Aspirated Internal Combustion Engine Exhaust Gas Using Artificial Neural Network
,”
Procedia Comput. Sci.
,
135
, pp.
267
274
.10.1016/j.procs.2018.08.174
5.
Tosun
,
E.
,
Ozgur
,
T.
,
Ozgur
,
C.
,
Ozcanli
,
M.
,
Serin
,
H.
, and
Aydin
,
K.
,
2017
, “
Comparative Analysis of Various Modelling Techniques for Emission Prediction of Diesel Engine Fueled by Diesel Fuel With Nanoparticle Additives
,”
Eur. Mech. Sci.
,
1
(
1
), pp.
15
23
.10.26701/ems.320490
6.
Kalogirou
,
S. A.
,
2003
, “
Artificial Intelligence for the Modeling and Control of Combustion Processes: A Review
,”
Prog. Energy Combust. Sci.
,
29
(
6
), pp.
515
566
.10.1016/S0360-1285(03)00058-3
7.
Bietresato
,
M.
,
Calcante
,
A.
, and
Mazzetto
,
F.
,
2015
, “
Mazzetto, A Neural Network Approach for Indirectly Estimating Farm Tractors Engine Performances
,”
Fuel
,
143
, pp.
144
154
.10.1016/j.fuel.2014.11.019
8.
Turkson
,
R. F.
,
Yan
,
F.
,
Ali
,
M. K. A.
, and
Hu
,
J.
,
2016
, “
Artificial Neural Network Applications in the Calibration of Spark-Ignition Engines: An Overview
,”
Eng. Sci. Technol. Int. J.
,
19
(
3
), pp.
1346
1359
.10.1016/j.jestch.2016.03.003
9.
Kathirvel
,
S.
,
Layek
,
A.
, and
Muthuraman
,
S.
,
2016
, “
Exploration of Waste Cooking Oil Methyl Esters (WCOME) as Fuel in Compression Ignition Engines: A Critical Review
,”
Eng. Sci. Technol. Int. J.
,
19
(
2
), pp.
1018
1026
.10.1016/j.jestch.2016.01.007
10.
Liu
,
Z.
,
Zuo
,
Q.
,
Wu
,
G.
, and
Li
,
Y.
,
2018
, “
An Artificial Neural Network Developed for Predicting of Performance and Emissions of a Spark Ignition Engine Fueled With Butanol–Gasoline Blends
,”
Adv. Mech. Eng.
,
10
(
1
), pp.
1
11
.10.1177/1687814017748438
11.
Roy
,
S.
,
Banerjee
,
R.
,
Das
,
A. K.
, and
Bose
,
P. K.
,
2014
, “
Development of an ANN Based System Identification Tool to Estimate the Performance-Emission Characteristics of a CRDI Assisted CNG Dual Fuel Diesel Engine
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
147
158
.10.1016/j.jngse.2014.08.002
12.
Taghavifar
,
H.
,
Taghavifar
,
H.
,
Mardani
,
A.
,
Mohebbi
,
A.
,
Khalilarya
,
S.
, and
Jafarmadar
,
S.
,
2016
, “
Appraisal of Artificial Neural Networks to the Emission Analysis and Prediction of CO2, Soot, and NOx of n-Heptane Fueled Engine
,”
J. Clean. Prod.
,
112
, pp.
1729
1739
.10.1016/j.jclepro.2015.03.035
13.
Li
,
Y.
,
Nithyanandan
,
K. Ç.
,
Zhang
,
J.
,
Lee
,
C. F.
, and
Liao
,
S.
,
2015
, “
Combustion and Emissions Performance of a Spark Ignition Engine Fueled With Water Containing Acetone-Butanol-Ethanol and Gasoline Blends
,”
SAE
Paper No. 2015-01-0908.10.4271/2015-01-0908
14.
Kalogirou
,
S. A.
,
2000
, “
Applications of Artificial Neural-Networks for Energy Systems
,”
Appl. Energy
,
67
(
1–2
), pp.
17
35
.10.1016/S0306-2619(00)00005-2
15.
Namitha
,
S.
, and
Shantharama
,
R.
,
2013
, “
Fuzzy Logic Controller for the Speed Control of an IC Engine Using Matlab/Simulink
,”
Int. J. Recent Technol. Eng.
,
2
(
2
), pp.
124
127
.http://www.ijrte.org/download/volume-2-issue-2/
16.
Sakthivel
,
G.
,
2016
, “
Prediction of CI Engine Performance, Emission and Combustion Characteristics Using Fish Oil as a Biodiesel at Different Injection Timing Using Fuzzy Logic
,”
Fuel
,
183
, pp.
214
229
.10.1016/j.fuel.2016.06.063
17.
Çay
,
Y.
,
Korkmaz
,
I.
,
Çiçek
,
A.
, and
Kara
,
F.
,
2013
, “
Prediction of Engine Performance and Exhaust Emissions for Gasoline and Methanol Using Artificial Neural Network
,”
Energy
,
50
, pp.
177
186
.10.1016/j.energy.2012.10.052
18.
Oğuz
,
H.
,
Sarıtas
,
I.
, and
Baydan
,
H. E.
,
2010
, “
Prediction of Diesel Engine Performance Using Biofuels With Artificial Neural Network
,”
Expert Syst. Appl.
,
37
(
9
), pp.
6579
6586
.10.1016/j.eswa.2010.02.128
19.
Kapusuz
,
M.
,
Ozcan
,
H.
, and
Ahmad
,
J.
,
2015
, “
Research of Performance on a Spark Ignition Engine Fueled by Alcohol-Gasoline Blends Using Artificial Neural Networks
,”
Appl. Therm. Eng.
,
91
, pp.
525
534
.10.1016/j.applthermaleng.2015.08.058
20.
Grimaldi
,
C. N.
, and
Mariani
,
F.
,
1999
, “
Prediction of Engine Operational Parameters for on Board Diagnostics Using a Free Model Technology
,”
SAE
Paper No.1999-01-1224.10.4271/1999-01-1224
21.
Ortmann
,
S.
,
Rychetsky
,
M.
,
Glesner
,
M.
,
Groppo
,
R.
,
Tubetti
,
P.
, and
Morra
,
G.
,
1998
, “
Engine Knock Estimation Using Neural Networks Based on a Real-World Database
,”
SAE
Paper No. 980513.10.4271/980513
22.
Winsel
,
T.
,
Ayeb
,
M.
,
Lichtenthäler
,
D.
, and
Theuerkauf
,
H. J.
,
1999
, “
A Neural Estimator for Cylinder Pressure and Engine Torque
,”
SAE
Paper No. 1999-03-01.10.4271/1999-03-01
23.
Kekez
,
M.
, and
Radziszewski
,
L.
,
2010
, “
Genetic-Fuzzy Model of Diesel Engine Working Cycle
,”
Bull. Pol. Acad. Sci. Tech. Sci.
,
58
(
4
), pp.
665
671
.10.2478/v10175-010-0071-x
24.
Saraswati
,
S.
,
Agarwal
,
P. K.
, and
Chand
,
S.
,
2011
, “
Neural Networks and Fuzzy Logic-Based Spark Advance Control of SI Engines
,”
Expert Syst. Appl.
,
38
(
6
), pp.
6916
6925
.10.1016/j.eswa.2010.12.032
25.
Lee
,
S. H.
,
Howlett
,
R. J.
, and
Walters
,
S. D.
,
2004
, “
Emission Reduction for a Small Gasoline Engine Using Fuzzy Control
,”
IFAC Proc.
,
37
(
22
), pp.
185
190
.10.1016/S1474-6670(17)30342-7
26.
Ganesan
,
S.
,
Dessert
,
P.
,
Sharma
,
R. P.
, and
Yasin
,
S.
,
2002
, “
An Idle Speed Controller Using Analytically Developed Fuzzy Logic Control Law
,”
SAE
Paper No. 2002-01-0138.10.4271/2002-01-0138
27.
Chatlatanagulchai
,
W.
,
Yaovaja
,
K.
,
Rhienprayoon
,
S.
, and
Wannatong
,
K.
,
2011
, “
Fuzzy Knock Control of Diesel-Dual-Fuel Engine
,”
SAE
Paper No. 2011-01-0690.10.4271/2011-01-0690
28.
Reyhart
,
D.
, and
Anwar
,
S.
,
2008
, “
A Fuzzy Distributed Control Algorithm for Intelligent Ground Speed Control of an Automotive Vehicle
,”
SAE
Paper No.2008-01-0902.10.4271/2008-01-0902
29.
Neelamegam
,
P.
, and
Amirtham
,
V. A.
,
2016
, “
Prediction of Solar Radiation for Solar Systems by Using ANN Models With Different Backpropagation Algorithms
,”
J. Appl. Res. Technol.
,
14
, pp.
206
214
.10.1016/j.jart.201605.001
30.
Sunphorka
,
S.
,
Chalermsinsuwan
,
B.
, and
Piumsomboon
,
P.
,
2017
, “
Application of Artificial Neural Network for Kinetic Parameters Prediction of Biomass Oxidation From Biomass Properties
,”
J. Energy Inst.
,
90
(
1
), pp.
51
61
.10.1016/j.joei.2015.10.007
31.
Shin
,
C.
,
Yun
,
U. T.
,
Kim
,
H. K.
, and
Park
,
S. C.
,
2000
, “
A Hybrid Approach of Neural Network and Memory-Based Learning to Data Mining
,”
IEEE Trans. Neural Networks
,
11
(
3
), pp.
637
646
.10.1109/72.846735
32.
Solmaz
,
O.
,
Kahramanli
,
H.
,
Kahraman
,
A.
, and
Ozgoren
,
M.
,
2010
, “
Prediction of Daily Solar Radiation Using ANNs for Selected Provinces in Turkey
,”
International Scientific Conference
(
UNITECH10
), Gabrovo, Bulgaria, Nov. 19–20, pp.
450
456
.https://singipedia.singidunum.ac.rs/preuzmi/40331-prediction-of-daily-solar-radiation-using-anns-for-selected-provinces-in-turkey/292
33.
Ozveren
,
U.
,
2017
, “
An Artificial Intelligence Approach to Predict Gross Heating Value of Lignocellulosic Fuels
,”
J. Energy Inst.
,
90
(
3
), pp.
397
407
.10.1016/j.joei.2016.04.003
34.
Yang
,
I. H.
,
Yeo
,
M. S.
, and
Kim
,
K. W.
,
2003
, “
Application of Artificial Neural Network to Predict the Optimal Start Time for Heating System in Building
,”
Energy Convers. Manage.
,
44
(
17
), pp.
2791
2809
.10.1016/S0196-8904(03)00044-X
35.
Ozgoren
,
M.
,
Bilgili
,
M.
, and
Sahin
,
B.
,
2012
, “
Estimation of Global Solar Radiation Using ANN Over Turkey
,”
Expert Syst. Appl.
,
39
(
5
), pp.
5043
5051
.10.1016/j.eswa.2011.11.036
36.
Akincioglu
,
S.
,
Mendi
,
F.
,
Çiçek
,
A.
, and
Akincioglu
,
G.
,
2013
, “
Prediction of Thrust Forces and Hole Diameters Using Artificial Neural Networks in Drilling of AISI D2 Tool Steel With Cemented Carbide Tools
,”
APJES—Acad. Plat. J. Eng. Sci.
,
1
(
2
), pp.
11
20
.10.5505/apjes.2013.87597
37.
Gürbüz
,
H.
,
2016
, “
Parametrical Investigation of Heat Transfer With Fast Response Thermocouple in SI Engine
,”
J. Energy Eng. ASCE
,
142
(
4
), p.
04016014
.10.1061/(ASCE)EY.1943-7897.0000350
38.
Gürbüz
,
H.
,
2017
, “
Experimental Evaluation of Combustion Parameters With Ion-Current Sensor Integrated to Fast Response Thermocouple in SI Engine
,”
J. Energy Eng. ASCE
,
143
(
2
), p.
04016046
.10.1061/(ASCE)EY.1943-7897.0000401
You do not currently have access to this content.