Abstract

This paper studies a consensus protocol design for leader-following multi-agent systems (MASs) via stochastic sampling information. Unlike traditional sampled-data control, this paper is focused on the stochastically varying sample intervals with a given probability by the Bernoulli distribution. Based on the Lyapunov–Krasovskii functional and reciprocally convex technique, the sufficient conditions are derived for the stochastic sampled-data protocol design of the error system, which guarantees that the following agent's states can reach an agreement on the leader's state. Finally, the numerical examples are provided to demonstrate the effectiveness of the developed theoretical results.

References

References
1.
Olfati-Saber
,
R.
,
2006
, “
Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory
,”
IEEE Trans. Automatic Control
,
51
(
3
), pp.
401
420
.10.1109/TAC.2005.864190
2.
Yuan
,
C.
,
2018
, “
Leader-Following Consensus Control of General Linear Multi-Agent Systems With Diverse Time-Varying Input Delays
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
6
), p.
061010
.10.1115/1.4038649
3.
Wu
,
Z. G.
,
Shi
,
P.
,
Su
,
H.
, and
Lu
,
R.
,
2015
, “
Dissipativity-Based Sampled-Data Fuzzy Control Design and Its Application to Truck-Trailer System
,”
IEEE Trans. Fuzzy Syst.
,
23
(
5
), pp.
1669
1679
.10.1109/TFUZZ.2014.2374192
4.
Wu
,
Z.
,
Peng
,
L.
,
Xie
,
L.
, and
Wen
,
J.
,
2012
, “
Stochastic Bounded Consensus Tracking of Second-Order Multi-Agent Systems With Measurement Noises and Sampled-Data
,”
J. Intell. Rob. Syst.
,
68
(
3–4
), pp.
261
273
.10.1007/s10846-012-9681-x
5.
Lee
,
T. H.
,
Park
,
J. H.
,
Kwon
,
O. M.
, and
Lee
,
S. M.
,
2013
, “
Stochastic Sampled-Data Control for State Estimation of Time-Varying Delayed Neural Networks
,”
Neural Networks
,
46
, pp.
99
108
.10.1016/j.neunet.2013.05.001
6.
Qu
,
Z.
,
2009
,
Cooperative Control of Dynamical Systems
,
Springer-Verlag
,
London
.
7.
Rakkiyappan
,
R.
,
Kaviarasan
,
B.
, and
Cao
,
J.
,
2015
, “
Leader-Following Consensus of Multi-Agent Systems Via Sampled-Data Control With Randomly Missing Data
,”
Neurocomputing
,
161
, pp.
132
147
.10.1016/j.neucom.2015.02.056
8.
Ding
,
L.
, and
Guo
,
G.
,
2015
, “
Sampled-Data Leader-Following Consensus for Nonlinear Multi-Agent Systems With Markovian Switching Topologies and Communication Delay
,”
J. Franklin Inst.
,
352
(
1
), pp.
369
383
.10.1016/j.jfranklin.2014.10.025
9.
Xu
,
W.
,
Ho
,
D. W.
,
Li
,
L.
, and
Cao
,
J.
,
2017
, “
Event-Triggered Schemes on Leader-Following Consensus of General Linear Multiagent Systems Under Different Topologies
,”
IEEE Trans. Cybern.
,
47
(
1
), pp.
212
223
.10.1109/TCYB.2015.2510746
10.
Wu
,
Z.
,
Peng
,
L.
,
Xie
,
L.
, and
Wen
,
J.
,
2015
, “
Stochastic Bounded Consensus Tracking of Second-Order Multi-Agent Systems With Measurement Noises Based on Sampled-Data With General Sampling Delay
,”
Int. J. Syst. Sci.
,
46
(
3
), pp.
546
561
.10.1080/00207721.2013.792973
11.
Park
,
P. G.
,
Ko
,
J. W.
, and
Jeong
,
C.
,
2011
, “
Reciprocally Convex Approach to Stability of Systems With Time-Varying Delays
,”
Automatica
,
47
(
1
), pp.
235
238
.10.1016/j.automatica.2010.10.014
12.
Park
,
M. J.
,
Lee
,
S. M.
,
Son
,
J. W.
,
Kwon
,
O. M.
, and
Cha
,
E. J.
,
2013
, “
Leader-Following Consensus Control for Networked Multi-Teleoperator Systems With Interval Time-Varying Communication Delays
,”
Chin. Phys. B
,
22
(
7
), p.
070506
.10.1088/1674-1056/22/7/070506
13.
Tang
,
Z. J.
,
Huang
,
T. Z.
,
Shao
,
J. L.
, and
Hu
,
J. P.
,
2011
, “
Leader-Following Consensus for Multi-Agent Systems Via Sampled-Data Control
,”
IET Control Theory Appl.
,
5
(
14
), pp.
1658
1665
.10.1049/iet-cta.2010.0653
14.
Rakkiyappan
,
R.
, and
Sakthivel
,
N.
,
2015
, “
Stochastic Sampled-Data Control for Exponential Synchronization of Markovian Jumping Complex Dynamical Networks With Mode-Dependent Time-Varying Coupling Delay
,”
Circuits, Syst., Signal Process.
,
34
(
1
), pp.
153
183
.10.1007/s00034-014-9854-x
15.
Dong
,
X.
,
Xiang
,
J.
,
Han
,
L.
,
Li
,
Q.
, and
Ren
,
Z.
,
2017
, “
Distributed Time-Varying Formation Tracking Analysis and Design for Second-Order Multi-Agent Systems
,”
J. Intell. Rob. Syst.
,
86
(
2
), pp.
277
289
.10.1007/s10846-016-0421-5
16.
Liu
,
X.
,
Zhang
,
K.
, and
Xie
,
W. C.
,
2019
, “
Impulsive Consensus of Networked Multi-Agent Systems With Distributed Delays in Agent Dynamics and Impulsive Protocols
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
1
), p.
011008
.10.1115/1.4041202
17.
Gao
,
H.
,
Wu
,
J.
, and
Shi
,
P.
,
2009
, “
Robust Sampled-Data H Control With Stochastic Sampling
,”
Automatica
,
45
(
7
), pp.
1729
1736
.10.1016/j.automatica.2009.03.004
18.
Lee
,
T. H.
,
Park
,
J. H.
,
Lee
,
S. M.
, and
Kwon
,
O. M.
,
2013
, “
Robust Synchronisation of Chaotic Systems With Randomly Occurring Uncertainties Via Stochastic Sampled-Data Control
,”
Int. J. Control
,
86
(
1
), pp.
107
119
.10.1080/00207179.2012.720034
19.
Sadikhov
,
T.
,
Haddad
,
W. M.
,
Yucelen
,
T.
, and
Goebel
,
R.
,
2017
, “
Approximate Consensus of Multiagent Systems With Inaccurate Sensor Measurements
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
9
), p.
091003
.10.1115/1.4036031
20.
Wang
,
X.
,
Su
,
H.
,
Wang
,
X.
, and
Liu
,
B.
,
2016
, “
Second-Order Consensus of Multi-Agent Systems Via Periodically Intermittent Pinning Control
,”
Circuits, Syst., Signal Process.
,
35
(
7
), pp.
2413
2431
.10.1007/s00034-015-0157-7
21.
Dong
,
Y.
, and
Huang
,
J.
,
2018
, “
Consensus and Flocking With Connectivity Preservation of Uncertain Euler-Lagrange Multi-Agent Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
9
), p.
091011
10.1115/1.4039666
22.
Ni
,
W.
,
Zhao
,
D.
,
Ni
,
Y.
, and
Wang
,
X.
,
2016
, “
Stochastic Averaging Approach to Leader-Following Consensus of Linear Multi-Agent Systems
,”
J. Franklin Inst.
,
353
(
12
), pp.
2650
2669
.10.1016/j.jfranklin.2016.05.020
23.
Li
,
L.
, and
Hua-Jing
,
F.
,
2013
, “
Bounded Consensus Tracking of Second-Order Multi-Agent Systems With Sampling Delay Under Directed Networks
,”
Chin. Phys. B
,
22
(
11
), p.
110505
.10.1088/1674-1056/22/11/110505
24.
Liu
,
Y.
, and
Lee
,
S. M.
,
2015
, “
Sampled-Data Synchronization of Chaotic Lur'e Systems With Stochastic Sampling
,”
Circuits, Syst., Signal Process.
,
34
(
12
), pp.
3725
3739
.10.1007/s00034-015-0032-6
25.
Sakthivel
,
R.
,
Arunkumar
,
A.
, and
Mathiyalagan
,
K.
,
2015
, “
Robust Sampled-Data H Control for Mechanical Systems
,”
Complexity
,
20
(
4
), pp.
19
29
.10.1002/cplx.21509
26.
Zhang
,
K.
,
Liu
,
G.
, and
Jiang
,
B.
,
2017
, “
Robust Unknown Input Observer-Based Fault Estimation of Leader-Follower Linear Multi-Agent Systems
,”
Circuits, Syst., Signal Process.
,
36
(
2
), pp.
525
542
.10.1007/s00034-016-0313-8
You do not currently have access to this content.