Abstract

Many control and observability theories for singularly perturbed systems require the full knowledge of system model parameters exceptionally if the system is considered as black box. To overcome this problem and to obtain an accurate and faithful model, this paper describes a new identification method for discrete-time nonlinear singularly perturbed systems (NLSPS) using the coupled state multimodel representation. The Levenberg–Marquardt algorithm is used to identify not only the submodels parameters but also the perturbation parameter ε. Two cases are considered to identify these systems. The first one supposes that the perturbation parameter ε of the real system is known and thus only the submodels parameters are identified. The second case supposes that this perturbation parameter is unknown and has to be identified with the other submodels parameters. The simulation example demonstrates the effectiveness of the proposed identification.

References

References
1.
Anup
,
S.
,
Bhatti
,
T.
, and
Verma
,
A.
,
2016
, “
Frozen Riccati Equation Method for Voltage Regulation in Multi Machine Power System
,” 2016 International Conference on Recent Advances and Innovations in Engineering (
ICRAIE
),
IEEE
, Jaipur, India, Dec. 23–25, pp.
1
6
.10.1109/ICRAIE.2016.7939477
2.
Ellis
,
M.
,
Heidarinejad
,
M.
, and
Christofides
,
P. D.
,
2013
, “
Economic Model Predictive Control of Nonlinear Singularly Perturbed Systems
,”
J. Process Control
,
23
(
5
), pp.
743
754
.10.1016/j.jprocont.2013.03.001
3.
Chen
,
J.
,
2014
, “
ε-Dependent Fuzzy State Feedback Stabilisation for Discrete-Time Fuzzy Singularly Perturbed Systems
,”
Int. J. Modell., Identif. Control
,
22
(
1
), pp.
13
19
.10.1504/IJMIC.2014.063872
4.
Vakil
,
M.
,
Fotouhi
,
R.
, and
Nikiforuk
,
P. N.
,
2011
, “
End-Effector Trajectory Tracking of a Flexible Link Manipulator Using Integral Manifold Concept
,”
Int. J. Syst. Sci.
,
42
(
12
), pp.
2057
2069
.10.1080/00207721003710631
5.
Nair
,
S. V.
,
Lakhekar
,
G.
, and
Panchade
,
V.
,
2016
, “
Fuzzy Sliding Mode Control Approach for Two Time Scale System: Stability Issues
,” 2016 Tenth International Conference on Intelligent Systems and Control (
ISCO
),
IEEE
, Coimbatore, India, Jan. 7–8, pp.
1
8
.10.1109/ISCO.2016.7727081
6.
Rayguru
,
M. M.
, and
Kar
,
I.
,
2017
, “
Contraction-Based Stabilisation of Nonlinear Singularly Perturbed Systems and Application to High Gain Feedback
,”
Int. J. Control
,
90
(
8
), pp.
1778
1792
.10.1080/00207179.2016.1221139
7.
Sfaihi
,
B.
, and
Benrejeb
,
M.
,
2013
, “
On Stability Analysis of Nonlinear Discrete Singularly Perturbed TS Fuzzy Models
,”
Int. J. Dyn. Control
,
1
(
1
), pp.
20
31
.10.1007/s40435-013-0003-3
8.
Zhang
,
Y.
,
Naidu
,
D. S.
,
Cai
,
C.
, and
Zou
,
Y.
,
2016
, “
Composite Control of a Class of Nonlinear Singularly Perturbed Discrete-Time Systems Via D-SDRE
,”
Int. J. Syst. Sci.
,
47
(
11
), pp.
2632
2641
.10.1080/00207721.2015.1006710
9.
Fu
,
Z.-J.
,
Xie
,
W.-F.
,
Han
,
X.
, and
Luo
,
W.-D.
,
2013
, “
Nonlinear Systems Identification and Control Via Dynamic Multitime Scales Neural Networks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
24
(
11
), pp.
1814
1823
.10.1109/TNNLS.2013.2265604
10.
Xie
,
W.-D.
,
Fu
,
Z.-J.
, and
Xie
,
W.-F.
,
2016
, “
Adaptive Nonlinear Systems Identification Via Discrete Multi-Time Scales Dynamic Neural Networks
,”
Intell. Autom. Soft Comput.
,
22
(
1
), pp.
111
123
.10.1080/10798587.2015.1058469
11.
Zheng
,
D.
,
Xie
,
W-F.
, and
Dai
,
S.-L.
,
2014
, “
Identification of Singularly Perturbed Nonlinear System Using Recurrent High-Order Neural Network
,” 2014
Proceedings of the 11th World Congress on Intelligent Control and Automation, IEEE
, Shenyang, China, June 29–July 4, pp.
5779
5784
.10.1109/WCICA.2014.7053707
12.
Zheng
,
D.
, and
Xie
,
W.
,
2015
, “
Identification for Nonlinear Singularly Perturbed System Using Recurrent High-Order Multi-Time Scales Neural Network
,” American Control Conference (
ACC
),
IEEE
, Chicago, IL, July 1–3, pp.
1824
1829
.10.1109/ACC.2015.7170998
13.
Zheng
,
D.-D.
,
Fu
,
Z.-J.
,
Xie
,
W.-F.
, and
Luo
,
W.-D.
,
2015
, “
Indirect Adaptive Control of Nonlinear System Via Dynamic Multilayer Neural Networks With Multi-Time Scales
,”
Int. J. Adap. Control Signal Process.
,
29
(
4
), pp.
505
523
.10.1002/acs.2491
14.
Zheng
,
D.
,
Xie
,
W.-F.
,
Ren
,
X.
, and
Na
,
J.
,
2017
, “
Identification and Control for Singularly Perturbed Systems Using Multitime-Scale Neural Networks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
2
), pp.
321
333
.10.1109/TNNLS.2015.2508738
15.
Ben Atia
,
S.
,
Messaoud
,
A.
, and
Ben Abdennour
,
R.
,
2018
, “
Robust Multiobserver Design for Discrete Uncertain Nonlinear Systems With Time-Varying Delay
,”
Trans. Inst. Meas. Control
,
40
(
1
), pp.
191
201
.10.1177/0142331216655397
16.
Atia
,
S. B.
,
Messaoud
,
A.
, and
Abdennour
,
R. B.
,
2015
, “
Supervised Model Predictive Control for Discrete-Time Nonlinear Systems With Time-Varying Delay
,”
Int. J. Comput. Appl.
,
114
(
12
), pp.
1
8
.10.5120/20027-1547
17.
Allaoui
,
M.
,
Messaoud
,
A.
,
Dehri
,
K.
, and
Abdennour
,
R. B.
,
2017
, “
Multimodel Repetitive–Predictive Control of Nonlinear Systems: Rejection of Unknown Non-Stationary Sinusoidal Disturbances
,”
Int. J. Control
,
90
(
7
), pp.
1478
1494
.10.1080/00207179.2016.1210233
18.
Hariz
,
M. B.
, and
Bouani
,
F.
,
2017
, “
Comparison Between Robust and Multi-Model Controllers
,”
Proc. Inst. Mech. Eng., Part I
,
231
(
10
), pp.
765
777
.10.1177/0959651817721773
19.
Talmoudi
,
S.
, and
Lahmari
,
M.
,
2018
, “
The Multi-Model Approach for Fractional-Order Systems Modelling
,”
Trans. Inst. Meas. Control
,
40
(
1
), pp.
331
340
.10.1177/0142331216655396
20.
Ben Rajab
,
A.
,
Bahri
,
N.
, and
Ltaief
,
M.
,
2017
, “
Multimodel Identification of Discrete-Time Nonlinear Singularly Perturbed System
,” 25th Mediterranean Conference on Control and Automation (
MED
),
IEEE
, Valletta, Malta, July 3–6, pp.
1
6
.10.1109/MED.2017.7984086
21.
Gómez-Peñate
,
S.
,
López-Estrada
,
F. R.
,
Valencia-Palomo
,
G.
,
Osornio-Ríos
,
R.
,
Zepeda-Hernández
,
J. A.
,
Ríos-Rojas
,
C.
, and
Camas-Anzueto
,
J.
,
2018
, “
Sensor Fault Diagnosis Observer for an Electric Vehicle Modeled as a Takagi-Sugeno System
,”
J. Sens.
,
2018
, pp.
1
9
.10.1155/2018/3291639
22.
Chadli
,
M.
, and
Karimi
,
H. R.
,
2013
, “
Robust Observer Design for Unknown Inputs Takagi–Sugeno Models
,”
IEEE Trans. Fuzzy Syst.
,
21
(
1
), pp.
158
164
.10.1109/TFUZZ.2012.2197215
23.
Aouaouda
,
S.
,
Boukhnifer
,
M.
, and
Bouhali
,
O.
,
2014
, “
Sensor Fault Observer Design for Uncertain Takagi-Sugeno Systems
,” IEEE 23rd International Symposium on Industrial Electronics (
ISIE
),
IEEE
, Istanbul, Turkey, June 1–4, pp.
236
241
.10.1109/ISIE.2014.6864617
24.
Bezzaoucha
,
S.
,
Marx
,
B.
,
Maquin
,
D.
, and
Ragot
,
J.
,
2016
, “
State and Output Feedback Control for Takagi–Sugeno Systems With Saturated Actuators
,”
Int. J. Adap. Control Signal Process.
,
30
(
6
), pp.
888
905
.10.1002/acs.2649
25.
Yang
,
Y.
, and
Ding
,
B.
,
2019
, “
Synchronous Distributed Model Predictive Control for State-Coupled Systems
,”
Trans. Inst. Meas. Control
,
41
(
10
), pp.
2922
2931
.10.1177/0142331218819129
26.
He
,
G.
,
Liu
,
Y.
,
Zhang
,
J.
, and
Yu
,
W.
,
2016
, “
Observer-Based Fault Estimation and Robust Tolerant Control for Takagi-Sugeno Systems: An Lmi Approach
,” 35th Chinese Control Conference (
CCC
),
IEEE
, Chengdu, China, July 27–29, pp.
5819
5824
.10.1109/ChiCC.2016.7554267
27.
Naidu
,
D.
,
Price
,
D.
, and
Hibey
,
J.
,
1987
, “
Singular Perturbations and Time Scales (SPaTS) in Discrete Control Systems-an Overview
,”
26th IEEE Conference on Decision and Control
, Vol.
26
,
IEEE,
Los Angeles, CA, Dec. 9–11, pp.
2096
2103
.10.1109/CDC.1987.272924
28.
Bahri
,
N.
,
Messaoud
,
A.
, and
Abdennour
,
R. B.
,
2011
, “
A Multimodel Emulator for Non Linear System Controls
,” Int. J. Sci. Tech. Autom. Control Comput. Eng. (
IJ-STA
),
5
(
1
), pp.
1500
1515
.https://www.sta-tn.com/IJ_STA/Papers/volume_5N1_jun_2011/P6_IJSTA_V5N1_11.pdf
29.
Ltaief
,
M.
,
Messaoud
,
A.
, and
Abdennour
,
R. B.
,
2014
, “
Optimal Systematic Determination of Models' Base for Multimodel Representation: Real Time Application
,”
Int. J. Autom. Comput.
,
11
(
6
), pp.
644
652
.10.1007/s11633-014-0815-4
30.
Orjuela
,
R.
,
Maquin
,
D.
, and
Ragot
,
J.
,
2006
, “
Identification Des Systèmes Non Linéaires Par Une Approche Multi-Modèle à États Découplés
,” Journées Identification et Modélisation Expérimentale (
JIME’2006
), Poitiers, France, Nov.https://www.semanticscholar.org/paper/Identification-des-syst%C3%A8mes-non-lin%C3%A9aires-par-une-%C3%A0-Orjuela-Maquin/1ad8dff4ce338125fa00bc09ff3db5e14ebdf11c
31.
Bahri
,
N.
,
Atig
,
A.
,
Abdennour
,
R. B.
,
Druaux
,
F.
, and
Lefebvre
,
D.
,
2017
, “
A Systematic Design of Emulators for Multivariable Non Square and Nonlinear Systems
,”
Int. J. Autom. Comput.
,
14
(
6
), pp.
742
754
.10.1007/s11633-016-0963-9
32.
Park
,
K.-S.
, and
Lim
,
J.-T.
,
2011
, “
Control of Discrete-Time Nonlinear Singularly Perturbed System With Uncertainty
,”
11th International Conference on Control, Automation and Systems
,
IEEE
, Gyeonggi-do, South Korea, Oct. 26–29, pp.
918
921
.https://ieeexplore.ieee.org/document/6106353
You do not currently have access to this content.