Abstract

This paper presents the problem of actuator fault estimation and fault-tolerant control (FTC) of a biological process using Takagi–Sugeno fuzzy formulation. The goal is to ensure the desired outputs tracking even if the time-varying actuator faults occur. We propose to use a proportional multi-integral (PMI) observer to estimate both the time-varying actuator faults and the state of system. The reconstructed faults are used to reconfigure the nominal controller. As a nominal control, we use a fuzzy linear quadratic integral (LQI) law. To ensure the global asymptotic convergence of the PMI observer and to improve the compensation speed of faults, we propose to use the multiple Lyapunov function by introducing a convergence rate. Sufficient conditions in terms of linear matrix inequalities (LMIs) are developed. The obtained results show that, the proposed approach is successfully applied to the problem of actuator fault-tolerant control of a bacterial growth process.

References

References
1.
Siimes
,
T.
,
Nakajima
,
M.
,
Yada
,
H.
,
Asama
,
H.
,
Nagamune
,
T.
,
Linko
,
P.
, and
Endo
,
I.
,
1992
, “
Object-Oriented Fuzzy Expert System for On-Line Diagnosing and Control of Bioprocesses
,”
Appl. Microbiol. Biotechnol.,
37
(
6
), pp.
756
761
.10.1007/BF00174842
2.
Davidsson
,
P.
, and
Wernstedt
,
F.
,
2002
, “
Software Agents for Bioprocess Monitoring and Control
,”
J. Chem. Technol. Biotechnol.
, 77(7), pp.
761
766
. 10.1002/jctb.631
3.
Dahmani
,
H.
,
Chadli
,
M.
,
Rabhi
,
A.
, and
El Hajjaji
,
A.
,
2013
, “
Road Curvature Estimation for Vehicle Lane Departure Detection Using a Robust Takagi-Sugeno Fuzzy Observer
,”
Veh. Syst. Dyn.
,
51
(
5
), pp.
581
599
.10.1080/00423114.2011.642806
4.
Chadli
,
M.
,
2013
,
Multiple Models Approach in Automation
,
Wiley
,
Hoboken, NJ
.
5.
Grisales
,
V.
,
Gauthier
,
A.
, and
Roux
,
G.
,
2006
, “
Fuzzy Optimal Control Design for Discrete Affine Takagi-Sugeno Fuzzy Models: Application to a Biotechnological Process
,”
IEEE International Conference on Fuzzy Systems, International Conference on Fuzzy Systems
, Vancouver, BC, Canada, July 16–21, pp.
2369
2376
.10.1109/FUZZY.2006.1682030
6.
Santin
,
I.
,
Pedret
,
C.
, and
Vilanova
,
R.
,
2015
, “
Fuzzy Control and Model Predictive Control Configurations for Effluent Violations Removal in Wastewater Treatment Plants
,”
Ind. Eng. Chem. Res.
,
54
(
10
), pp.
2763
2775
.10.1021/ie504079q
7.
Qiao
,
J-F.
,
Hou
,
Y.
,
Zhang
,
L.
, and
Han
,
H-G.
,
2018
, “
Adaptive Fuzzy Neural Network Control of Wastewater Treatment Process With Multiobjective Operation
,”
Neurocomputing
, 275, pp.
383
393
.10.1016/j.neucom.2017.08.059
8.
Noura
,
H.
,
Theilliol
,
D.
,
Ponsart
,
J.-C.
, and
Chamseddine
,
A.
,
2009
, “
Fault-Tolerant Control Systems
,”
Advances in Industrial Control
,
Springer
,
London
.
9.
Li
,
M.
,
Liu
,
M.
,
Zhang
,
Y.
, and
Chen
,
Z.
,
2019
, “
Fault Estimation and Fault-Tolerant Control Via a Novel Proportional-Integral Observer in Singular Takagi-Sugeno Fuzzy Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
9
), p.
091005
.10.1115/1.4042243
10.
Tajeddini
,
M. A.
,
Safarinejadian
,
B.
, and
Rakhshan
,
M.
,
2015
, “
An Unknown Input Observer for Fault Detection Based on Sliding Mode Observer in Electrical Steering Assist Systems
,”
Amirkabir Int. J. Model., Identification, Simul. Control
,
47
(
2
), pp.
31
43
.10.22060/MISCJ.2015.568
11.
Youssef
,
T.
,
Chadli
,
M.
,
Karimi
,
H. R.
, and
Wang
,
R.
,
2017
, “
Actuator and Sensor Faults Estimation Based on Proportional Integral Observer for TS Fuzzy Model
,”
J. Franklin Inst.
,
354
(
6
), pp.
2524
2542
.10.1016/j.jfranklin.2016.09.020
12.
Kühne
,
P.
,
Pöschke
,
F.
, and
Schulte
,
H.
,
2018
, “
Fault Estimation and Fault-Tolerant Control of the FAST NREL 5-MW Reference Wind Turbine Using a Proportional Multi-Integral Observer
,”
Int. J. Adaptive Control Signal Process.
,
32
(
4
), pp.
568
585
.10.1002/acs.2800
13.
Abdelmalek
,
S.
,
Azar
,
A. T.
, and
Dib
,
D.
,
2018
, “
A Novel Actuator Fault-Tolerant Control Strategy of DFIG-Based Wind Turbines Using Takagi-Sugeno Multiple Models
,”
Int. J. Control, Autom. Syst.
,
16
(
3
), pp.
1415
1424
.10.1007/s12555-017-0320-y
14.
Wang
,
R.
,
Jing
,
H.
,
Hu
,
C.
,
Chadli
,
M.
, and
Yan
,
F.
,
2016
, “
Robust H Output-Feedback Yaw Control for in-Wheel Motor Driven Electric Vehicles With Differential Steering
,”
Neurocomputing
,
173
(Part 3), pp.
676
684
.10.1016/j.neucom.2015.08.015
15.
Choi
,
H. D.
,
Ahn
,
C. K.
,
Lim
,
M. T.
, and
Song
,
M. K.
,
2016
, “
Dynamic Output-Feedback H Control for Active Half-Vehicle Suspension Systems With Time-Varying Input Delay
,”
Int. J. Control, Autom. Syst.
,
14
(
1
), pp.
59
68
.10.1007/s12555-015-2005-8
16.
Fragkoulis
,
D.
,
Roux
,
G.
, and
Dahhou
,
B.
,
2011
, “
Detection, Isolation and Identification of Multiple Actuator and Sensor Faults in Nonlinear Dynamic Systems: Application to a Waste Water Treatment Process
,”
Appl. Math. Modell.
,
35
(
1
), pp.
522
543
.10.1016/j.apm.2010.07.019
17.
Methnani
,
S.
,
Gauthier
,
J. P.
, and
Lafont
,
F.
,
2011
, “
Sensor Fault Reconstruction and Observability for Unknown Inputs, With an Application to Wastewater Treatment Plants
,”
Int. J. Control
,
84
(
4
), pp.
822
833
.10.1080/00207179.2011.582156
18.
Abdelkader
,
A.
,
Boussada
,
M.
,
Fiaty
,
K.
,
Hammouri
,
H.
, and
Nouri
,
A. S.
,
2016
, “
Fault Detection Identification and Isolation Via High-Gain Observer in a Semi Continuous Stirred Tank Reactor
,”
Int. J. Sci. Tech. Autom. Control Comput. Eng.
,
10
(
1
), pp.
2055
2061
. https://www.sta-tn.com/IJ_STA/volume_10n1_SI_AND_April_2016.htm
19.
Belchior
,
C. A. C.
,
Araújo
,
R. A. M.
,
Souza
,
F. A. A.
, and
Landeck
,
J. A. C.
,
2018
, “
Sensor-Fault tolerance in a Wastewater Treatment Plant by Means of ANFIS-Based Soft Sensor and Control Reconfiguration
,”
Neural Comput. Appl.
,
30
(
10
), pp.
3265
3276
.10.1007/s00521-017-2901-3
20.
Bezzaoucha
,
S.
,
Marx
,
B.
,
Maquin
,
D.
, and
Ragot
,
J.
,
2013
, “
State and Multiplicative Sensor Fault Estimation for Nonlinear Systems
,” Conference on Control and Fault-Tolerant Systems (
SysTol
), Nice, France, Oct. 9–11, pp.
456
461
.10.1109/SysTol.2013.6693898
21.
Nagy-Kiss
,
A. M.
, and
Schutz
,
G.
,
2013
, “
Estimation and Diagnosis Using Multi-Models With Application to a Wastewater Treatment Plant
,”
J. Process. Control
,
23
(
10
), pp.
1528
1544
.10.1016/j.jprocont.2013.09.027
22.
Aouaouda
,
S.
,
Chadli
,
M.
,
Tarek Khadir
,
M.
, and
Bouarar
,
T.
,
2012
, “
Robust Fault Tolerant Tracking Controller Design for Unknown Inputs T–S Models With Unmeasurable Premise Variables
,”
J. Process. Control
,
22
(
5
), pp.
861
872
.10.1016/j.jprocont.2012.02.016
23.
Ordaz
,
P.
,
Ordaz
,
M.
,
Cuvas
,
C.
, and
Santos
,
O.
,
2019
, “
Reduction of Matched and Unmatched Uncertainties for a Class of Nonlinear Perturbed Systems Via Robust Control
,”
Int. J. Robust Nonlinear Control
,
29
(
8
), pp.
2510
2524
.10.1002/rnc.4506
24.
Nagy-Kiss
,
A.
,
Ichalal
,
D.
,
Schutz
,
G.
, and
Ragot
,
J.
,
2015
, “
Fault Tolerant Control for Uncertain Descriptor Multi-Models With Application to Wastewater Treatment Plant
,”
Proceedings of the American Control Conference
, Chicago, IL, July 1–3, pp.
5718
5725
.10.1109/ACC.2015.7172235
25.
Beyhan
,
S.
,
Sarabi
,
F. E.
,
Lendek
,
Z.
, and
Babuška
,
R.
,
2017
, “
Takagi-Sugeno Fuzzy Payload Estimation and Adaptive Control
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
844
849
.10.1016/j.ifacol.2017.08.150
26.
Theilliol
,
D.
,
Join
,
C.
, and
Zhang
,
Y.
,
2008
, “
Actuator Fault Tolerant Control Design Based on a Reconfigurable Reference Input
,”
Int. J. Appl. Math. Comput. Sci.
,
18
(
4
), pp.
553
560
.10.2478/v10006-008-0048-1
27.
Jain
,
T.
,
Yame
,
J.
, and
Saute
,
D.
,
2018
,
Active Fault-Tolerant Control Systems
, Vol.
128
,
Springer International Publishing
,
Cham, Switzerland
.
28.
Tanaka
,
K.
, and
Wang
,
H. O.
,
2001
,
Fuzzy Control Systems Design and Analysis
,
Wiley
,
New York
.
29.
Abyad
,
M.
,
Karama
,
A.
, and
Khallouq
,
A.
,
2018
, “
A Comparative Analysis of Two Controllers for Trajectory Tracking Control: Application to a Biological Process
,”
Adv. Sci., Technol. Eng. Syst. J.
,
3
(
4
), pp.
318
326
.10.25046/aj030432
30.
Schulte
,
H.
, and
Hahn
,
H.
,
2004
, “
Fuzzy State Feedback Gain Scheduling Control of Servo-Pneumatic Actuators
,”
Control Eng. Pract.
,
12
(
5
), pp.
639
650
.10.1016/S0967-0661(03)00148-5
31.
Lancaster
,
P.
, and
Leiba
,
R.
,
1995
,
Algebraic Riccati Equations
,
Clarendon press
,
New York
.
32.
Ichalal
,
D.
,
Marx
,
B.
,
Maquin
,
D.
, and
Ragot
,
J.
,
2010
, “
New Fault Tolerant Control Strategy for Nonlinear Systems With Multiple Model Approach
,” IEEE Conference on Control and Fault-Tolerant Systems (
SysTol
), Madrid, Spain, July 26–28, pp.
606
611
.10.1109/SYSTOL.2010.5675951
33.
Chadli
,
M.
,
2002
, “
Stabilite et Commande de Systemes Decrits par des Multimodeles
,” Ph.D. thesis,
Institut National Polytechnique de Lorraine
,
Lorraine, France
.
34.
Tanaka
,
K.
,
Hori
,
T.
, and
Wang
,
H.
,
2003
, “
A multiple lyapunov function approach to stabilization of fuzzy control systems
,”.
IEEE Trans. Fuzzy Syst.
,
11
(
4
), pp.
582
589
.10.1109/TFUZZ.2003.814861
35.
Bastin
,
G.
, and
Dochain
,
D.
,
1990
,
On-Line Estimation and Adaptive Control of Bioreactors
,
Elsevier Science Publications
,
Amsterdam, The Netherlands
.
36.
Nagy
,
A. M.
,
Mourot
,
G.
,
Marx
,
B.
,
Ragot
,
J.
, and
Schutz
,
G.
,
2010
, “
Systematic Multimodeling Methodology Applied to an Activated Sludge Reactor Model
,”
Ind. Eng. Chem. Res.
,
49
(
6
), pp.
2790
2799
.10.1021/ie8017687
37.
Lofberg
,
J.
,
2004
, “
A Toolbox for Modeling and Optimization in MATLAB
,”
IEEE International Symposium on Computer Aided Control Systems Design
, New Orleans, LA, Sept. 2–4, pp.
284
289
.10.1109/CACSD.2004.1393890
You do not currently have access to this content.