Abstract

Lithium iron phosphate (LiFePO4 or LFP) is a common active material in lithium-ion batteries. It has been observed that this material undergoes phase transitions during the normal charge and discharge operation of the battery. Electrochemical models of lithium-ion batteries can be modified to account for this phenomenon at the expense of some added complexity. We explore this problem for the single particle model (SPM) where the underlying dynamic model for diffusion of lithium ions in phase transition materials is a partial differential equation (PDE) with a moving boundary. We derive a novel boundary observer to estimate the concentration of lithium ions together with a moving boundary radius from the SPM via the backstepping method for PDEs, and simulations are provided to illustrate the performance of the observer. Our comments are stated on the gap between the proposed observer and a complete state-of-charge (SoC) estimation algorithm for lithium-ion batteries with phase transition materials.

References

1.
Padhi
,
A. K.
,
Nanjundaswamy
,
K.
, and
Goodenough
,
J. B.
,
1997
, “
Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
144
(
4
), pp.
1188
1194
.10.1149/1.1837571
2.
Chaturvedi
,
N. A.
,
Klein
,
R.
,
Christensen
,
J.
,
Ahmed
,
J.
, and
Kojic
,
A.
,
2010
, “
Algorithms for Advanced Battery-Management Systems
,”
IEEE Control Syst.
,
30
(
3
), pp.
49
68
.10.1109/MCS.2010.936293
3.
Perez
,
H.
,
Shahmohammadhamedani
,
N.
, and
Moura
,
S.
,
2015
, “
Enhanced Performance of Li-Ion Batteries Via Modified Reference Governors and Electrochemical Models
,”
IEEE/ASME Trans. Mechatronics
,
20
(
4
), pp.
1511
1520
.10.1109/TMECH.2014.2379695
4.
Thomas
,
K. E.
,
Newman
,
J.
, and
Darling
,
R. M.
,
2002
, “
Mathematical Modeling of Lithium Batteries
,”
Advances in Lithium-Ion Batteries
,
Springer
,
Boston, MA
, pp.
345
392
.
5.
Di Domenico
,
D.
,
Stefanopoulou
,
A.
, and
Fiengo
,
G.
,
2010
, “
Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter
,”
ASME J. Dyn. Syst., Meas, Control
,
132
(
6
), p.
061302
.10.1115/1.4002475
6.
Moura
,
S. J.
,
Chaturvedi
,
N. A.
, and
Krstić
,
M.
,
2014
, “
Adaptive Partial Differential Equation Observer for Battery State-of-Charge/State-of-Health Estimation Via an Electrochemical Model
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
1
), p.
011015
.10.1115/1.4024801
7.
Wang
,
Y.
,
Fang
,
H.
,
Sahinoglu
,
Z.
,
Wada
,
T.
, and
Hara
,
S.
,
2015
, “
Adaptive Estimation of the State of Charge for Lithium-Ion Batteries: Nonlinear Geometric Observer Approach
,”
IEEE Trans. Control Syst. Technol.
,
23
(
3
), pp.
948
962
.10.1109/TCST.2014.2356503
8.
Dey
,
S.
,
Ayalew
,
B.
, and
Pisu
,
P.
,
2015
, “
Nonlinear Robust Observers for State-of-Charge Estimation of Lithium-Ion Cells Based on a Reduced Electrochemical Model
,”
IEEE Trans. Control Syst. Technol.
,
23
(
5
), pp.
1935
1942
.10.1109/TCST.2014.2382635
9.
Perez
,
H. E.
, and
Moura
,
S. J.
,
2015
, “
Sensitivity-Based Interval PDE Observer for Battery SoC Estimation
,”
American Control Conference (ACC)
,
Chicago, IL
, July 1–3, pp.
323
328
.10.1109/ACC.2015.7170756
10.
Moura
,
S. J.
,
Argomedo
,
F. B.
,
Klein
,
R.
,
Mirtabatabaei
,
A.
, and
Krstic
,
M.
,
2017
, “
Battery State Estimation for a Single Particle Model With Electrolyte Dynamics
,”
IEEE Trans. Control Syst. Technol.
,
25
(
2
), pp.
453
468
.10.1109/TCST.2016.2571663
11.
Tang
,
S.
,
Camacho-Solorio
,
L.
,
Wang
,
Y.
, and
Krstic
,
M.
,
2017
, “
State-of-Charge Estimation From a Thermal–Electrochemical Model of Lithium-Ion Batteries
,”
Automatica
,
83
, pp.
206
219
.10.1016/j.automatica.2017.06.030
12.
Riemann
,
B. J. C.
,
Li
,
J.
,
Adewuyi
,
K.
,
Landers
,
R. G.
, and
Park
,
J.
,
2020
, “
Control-Oriented Modeling of Lithium-Ion Batteries
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
2
), p.
021002
.10.1115/1.4048355
13.
Srinivasan
,
V.
, and
Newman
,
J.
,
2004
, “
Discharge Model for the Lithium Iron-Phosphate Electrode
,”
J. Electrochem. Soc.
,
151
(
10
), pp.
A1517
A1529
.10.1149/1.1785012
14.
Zhang
,
Q.
, and
White
,
R. E.
,
2007
, “
Moving Boundary Model for the Discharge of a LiCoO2 Electrode
,”
J. Electrochem. Soc.
,
154
(
6
), pp.
A587
A596
.10.1149/1.2728733
15.
Schwunk
,
S.
,
Armbruster
,
N.
,
Straub
,
S.
,
Kehl
,
J.
, and
Vetter
,
M.
,
2013
, “
Particle Filter for State of Charge and State of Health Estimation for Lithium–Iron Phosphate Batteries
,”
J. Power Sources
,
239
, pp.
705
710
.10.1016/j.jpowsour.2012.10.058
16.
Li
,
J.
,
Barillas
,
J. K.
,
Guenther
,
C.
, and
Danzer
,
M. A.
,
2014
, “
Sequential Monte Carlo Filter for State Estimation of LiFePO4 Batteries Based on an Online Updated Model
,”
J. Power Sources
,
247
, pp.
156
162
.10.1016/j.jpowsour.2013.08.099
17.
Koga
,
S.
,
Camacho-Solorio
,
L.
, and
Krstic
,
M.
,
2017
, “
State Estimation for Lithium Ion Batteries With Phase Transition Materials
,”
ASME Paper No. DSCC2017-5266.
10.1115/DSCC2017-5266
18.
Gupta
,
S. C.
,
2003
,
The Classical Stefan Problem: Basic Concepts, Modelling and Analysis
, Vol.
45
,
Elsevier
,
Amsterdam, The Netherlands
.
19.
Koga
,
S.
,
Diagne
,
M.
, and
Krstic
,
M.
,
2019
, “
Control and State Estimation of the One-Phase Stefan Problem Via Backstepping Design
,”
IEEE Trans. Autom. Control
,
64
(
2
), pp.
510
525
.10.1109/TAC.2018.2836018
20.
Koga
,
S.
,
Bresch-Pietri
,
D.
, and
Krstic
,
M.
,
2020
, “
Delay Compensated Control of the Stefan Problem and Robustness to Delay Mismatch
,”
Int. J. Robust Nonlinear Control
,
30
(
6
), pp.
2304
2334
.10.1002/rnc.4909
21.
Koga
,
S.
, and
Krstic
,
M.
,
2020
, “
Arctic Sea ICE State Estimation From Thermodynamic PDE Model
,”
Automatica
,
112
, p.
108713
.10.1016/j.automatica.2019.108713
22.
Krstic
,
M.
, and
Smyshlyaev
,
A.
,
2008
,
Boundary Control of PDEs: A Course on Backstepping Designs
, Vol.
16
,
SIAM
,
Philadelphia, PA
.
23.
Klein
,
R.
,
Chaturvedi
,
N. A.
,
Christensen
,
J.
,
Ahmed
,
J.
,
Findeisen
,
R.
, and
Kojic
,
A.
,
2013
, “
Electrochemical Model Based Observer Design for a Lithium-Ion Battery
,”
IEEE Trans. Control Syst. Technol.
,
21
(
2
), pp.
289
301
.10.1109/TCST.2011.2178604
24.
Khandelwal
,
A.
,
Hariharan
,
K. S.
,
Kumar
,
V. S.
,
Gambhire
,
P.
,
Kolake
,
S. M.
,
Oh
,
D.
, and
Doo
,
S.
,
2014
, “
Generalized Moving Boundary Model for Charge–Discharge of LiFePO4/C Cells
,”
J. Power Sources
,
248
, pp.
101
114
.10.1016/j.jpowsour.2013.09.066
25.
Khandelwal
,
A.
,
Hariharan
,
K. S.
,
Gambhire
,
P.
,
Kolake
,
S. M.
,
Yeo
,
T.
, and
Doo
,
S.
,
2015
, “
Thermally Coupled Moving Boundary Model for Charge–Discharge of LiFePO4/C Cells
,”
J. Power Sources
,
279
, pp.
180
196
.10.1016/j.jpowsour.2015.01.018
26.
Zeng
,
Y.
,
Albertus
,
P.
,
Klein
,
R.
,
Chaturvedi
,
N.
,
Kojic
,
A.
,
Bazant
,
M. Z.
, and
Christensen
,
J.
,
2013
, “
Efficient Conservative Numerical Schemes for 1D Nonlinear Spherical Diffusion Equations With Applications in Battery Modeling
,”
J. Electrochem. Soc.
,
160
(
9
), pp.
A1565
A1571
.10.1149/2.102309jes
27.
Camacho-Solorio
,
L.
,
Klein
,
R.
,
Anahita
,
M.
,
Moura
,
S. J.
, and
Krstic
,
M.
,
2016
, “
State Estimation for an Electrochemical Model of Multiple- Material Lithium-Ion Batteries
,”
ASME Paper No. DSCC2016-9877.
10.1115/DSCC2016-9877
28.
Koga
,
S.
, and
Krstic
,
M.
,
2020
, “
Single-Boundary Control of the Two-Phase Stefan System
,”
Syst. Control Lett.
,
135
, p.
104573
.10.1016/j.sysconle.2019.104573
29.
Camacho-Solorio
,
L.
,
Moura
,
S. J.
, and
Krstic
,
M.
,
2018
, “
Robustness of Boundary Observers for Radial Diffusion Equations to Parameter Uncertainty
,”
American Control Conference (ACC)
,
Milwaukee, WI
, June 27–29, pp.
3484
3489
.10.23919/ACC.2018.8430985
30.
Koga
,
S.
,
Karafyllis
,
I.
, and
Krstic
,
M.
,
2019
, “
Input-to-State Stability for the Control of Stefan Problem With Respect to Heat Loss
,” Preprint arxiv.org/abs/1903.01447.
31.
Srinivasan
,
V.
, and
Newman
,
J.
,
2004
, “
Design and Optimization of a Natural Graphite/Iron Phosphate Lithium-Ion Cell
,”
J. Electrochem. Soc.
,
151
(
10
), pp.
A1530
A1538
.10.1149/1.1785013
You do not currently have access to this content.