Abstract

Hybrid electric vehicle (HEV) control strategies are often designed around specific driving conditions. However, when driving conditions differ from the designed conditions, HEV performance can suffer. This paper develops a novel HEV energy management strategy (EMS) that is robust to uncertain driving conditions by augmenting a stochastic dynamic programing (SDP) controller with minimax dynamic programing (MDP). This combination of MDP and SDP has not previously been studied in the literature. The stochastic element uses a Markov chain model to represent driver behavior and is used to optimize the control for expected future driver behavior. The minimax element instead optimizes against potential worst-case (maximal cost) future driver behavior. The resulting EMS can be directly implemented on a vehicle. This method is demonstrated on a series hybrid electric bus model. Robustness to uncertain driving conditions is tested by simulating on a variety of heavy-duty vehicle drive cycles that differ from the drive cycle on which the EMS was trained. A single tuning parameter is used to balance the stochastic and minimax elements of the EMS, and a parametric study shows the effects of this tuning parameter. It was found that using minimax control could increase the vehicle fuel economy on multiple uncertain driving conditions, with a tradeoff of decreased fuel economy when the driving conditions match the designed conditions. That is, it offers an exchange of performance on the nominal driving conditions for performance on uncertain driving conditions.

References

1.
Opila
,
D. F.
,
Wang
,
X.
,
McGee
,
R.
,
Brent Gillespie
,
R.
,
Cook
,
J. A.
, and
Grizzle
,
J.
,
2014
, “
Real-World Robustness for Hybrid Vehicle Optimal Energy Management Strategies Incorporating Drivability Metrics
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
6
), p. 061011. 10.1115/1.4027680
2.
Soriano
,
F.
,
Moreno-Eguilaz
,
M.
, and
Alvarez-Florez
,
J.
,
2015
, “
Drive Cycle Identification and Energy Demand Estimation for Refuse-Collecting Vehicles
,”
IEEE Trans. Veh. Technol.
,
64
(
11
), pp.
4965
4973
.10.1109/TVT.2014.2382591
3.
Langari
,
R.
, and
Won
,
J.-S.
,
2003
, “
Integrated Drive Cycle Analysis for Fuzzy Logic Based Energy Management in Hybrid Vehicles
,”
12th IEEE International Conference on Fuzzy Systems, FUZZ '03
, Vol.
1
, St. Louis, MO, May 25–28, pp.
290
295
.10.1109/FUZZ.2003.1209377
4.
Jeon
,
S-I.
,
Jo
,
S-T.
,
Park
,
Y-I.
, and
Lee
,
J-M.
,
2002
, “
Multi-Mode Driving Control of a Parallel Hybrid Electric Vehicle Using Driving Pattern Recognition
,”
ASME J. Dyn. Sys., Meas., Control
,
124
(
1
), pp.
141
149
.10.1115/1.1434264
5.
Cairano
,
S. D.
,
Bernardini
,
D.
,
Bemporad
,
A.
, and
Kolmanovsky
,
I. V.
,
2014
, “
Stochastic MPC With Learning for Driver-Predictive Vehicle Control and Its Application to HEV Energy Management
,”
IEEE Trans. Control Syst. Technol.
,
22
(
3
), pp.
1018
1031
.10.1109/TCST.2013.2272179
6.
Murphey
,
Y. L.
,
Park
,
J.
,
Kiliaris
,
L.
,
Kuang
,
M. L.
,
Masrur
,
M. A.
,
Phillips
,
A. M.
, and
Wang
,
Q.
,
2013
, “
Intelligent Hybrid Vehicle Power Control Part II: Online Intelligent Energy Management
,”
IEEE Trans. Veh. Technol.
,
62
(
1
), pp.
69
79
.10.1109/TVT.2012.2217362
7.
Musardo
,
C.
,
Rizzoni
,
G.
,
Guezennec
,
Y.
, and
Staccia
,
B.
,
2005
, “
A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management
,”
Eur. J. Control
,
11
(
4–5
), pp.
509
524
.10.3166/ejc.11.509-524
8.
Gu
,
B.
, and
Rizzoni
,
G.
,
2006
, “
An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management Based on Driving Pattern Recognition
,”
ASME
Paper No. 47683
. 10.1115/47683
9.
Sciarretta
,
A.
,
Back
,
M.
, and
Guzzella
,
L.
,
2004
, “
Optimal Control of Parallel Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
12
(
3
), pp.
352
363
.10.1109/TCST.2004.824312
10.
Chen
,
H.
,
Kessels
,
J.
, and
Weiland
,
S.
,
2015
, “
Adaptive ECMS: A Causal Set-Theoretic Method for Equivalence Factor Estimation
,”
IFAC-PapersOnLine
,
48
(
15
), pp.
78
85
.10.1016/j.ifacol.2015.10.012
11.
Khodabakhshian
,
M.
,
Feng
,
L.
, and
Wikander
,
J.
,
2013
, “
Improving Fuel Economy and Robustness of an Improved Ecms Method
,” 10th IEEE International Conference on Control and Automation (
ICCA
),
IEEE
, Hangzhou, China, June 12–14, pp.
598
603
.10.1109/ICCA.2013.6564946
12.
Scokaert
,
P. O.
, and
Mayne
,
D. Q.
,
1998
, “
Min-Max Feedback Model Predictive Control for Constrained Linear Systems
,”
IEEE Trans. Autom. Control
,
43
(
8
), pp.
1136
1142
.10.1109/9.704989
13.
Nie
,
P-y.
,
Chen
,
L-h.
, and
Fukushima
,
M.
,
2006
, “
Dynamic Programming Approach to Discrete Time Dynamic Feedback Stackelberg Games With Independent and Dependent Followers
,”
Eur. J. Oper. Res.
,
169
(
1
), pp.
310
328
.10.1016/j.ejor.2004.06.011
14.
Dextreit
,
C.
,
Assadian
,
F.
,
Kolmanovsky
,
I. V.
,
Mahtani
,
J.
, and
Burnham
,
K.
,
2008
, “
Hybrid Electric Vehicle Energy Management Using Game Theory
,”
SAE
Paper No. 2008-01-1317.10.4271/2008-01-1317
15.
Dextreit
,
C.
, and
Kolmanovsky
,
I. V.
,
2014
, “
Game Theory Controller for Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
652
663
.10.1109/TCST.2013.2254597
16.
Zhang
,
P.
,
Yan
,
F.
, and
Du
,
C.
,
2015
, “
A Comprehensive Analysis of Energy Management Strategies for Hybrid Electric Vehicles Based on Bibliometrics
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
88
104
.10.1016/j.rser.2015.03.093
17.
Bellman
,
R. E.
, and
Dreyfus
,
S. E.
,
2015
,
Applied Dynamic Programming
,
Princeton University Press
, Princeton, NJ.
18.
Asher
,
Z. D.
,
Baker
,
D. A.
, and
Bradley
,
T. H.
,
2018
, “
Prediction Error Applied to Hybrid Electric Vehicle Optimal Fuel Economy
,”
IEEE Trans. Control Syst. Technol.
,
26
(
6
), pp.
2121
2134
.10.1109/TCST.2017.2747502
19.
Kolmanovsky
,
I.
,
Siverguina
,
I.
, and
Lygoe
,
B.
,
2002
, “
Optimization of Powertrain Operating Policy for Feasibility Assessment and Calibration: Stochastic Dynamic Programming Approach
,”
Proceedings of the American Control Conference (IEEE Cat. No. CH37301)
, Vol.
2
, Anchorage, AK, May 8–10, pp.
1425
1430
.10.1109/ACC.2002.1023221
20.
Tate
,
E. D.
,
Grizzle
,
J. W.
, and
Peng
,
H.
,
2008
, “
Shortest Path Stochastic Control for Hybrid Electric Vehicles
,”
Int. J. Robust Nonlinear Control
,
18
(
14
), pp.
1409
1429
.10.1002/rnc.1288
21.
Lin
,
C.-C.
,
Peng
,
H.
, and
Grizzle
,
J. W.
,
2004
, “
A Stochastic Control Strategy for Hybrid Electric Vehicles
,”
Proceedings of the American Control Conference
, Vol.
5,
Boston, MA, June 30–July 2, pp.
4710
4715
.10.23919/ACC.2004.1384056
22.
Johannesson
,
L.
,
Asbogard
,
M.
, and
Egardt
,
B.
,
2007
, “
Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains Using Stochastic Dynamic Programming
,”
IEEE Trans. Intell. Transport. Syst.
,
8
(
1
), pp.
71
83
.10.1109/TITS.2006.884887
23.
Williamson
,
S. S.
,
2013
,
Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles
,
Springer
,
New York
.
24.
Onori
,
S.
,
Serrao
,
L.
, and
Rizzoni
,
G.
,
2016
,
Hybrid Electric Vehicles: Energy Management Strategies
,
Springer
, London, UK.
25.
Paganelli
,
G.
,
Guerra
,
T.-M.
,
Delprat
,
S.
,
Santin
,
J.-J.
,
Delhom
,
M.
, and
Combes
,
E.
,
2000
, “
Simulation and Assessment of Power Control Strategies for a Parallel Hybrid Car
,”
Proc. Inst. Mech. Eng., Part D
,
214
(
7
), pp.
705
717
.10.1243/0954407001527583
26.
Guzzella
,
L.
, and
Sciarretta
,
A.
,
2013
,
Vehicle Propulsion Systems
, 3rd ed.,
Springer Berlin Heidelberg
,
Berlin
.
27.
Mohan
,
G.
,
Assadian
,
F.
, and
Longo
,
S.
,
2013
, “
Comparative Analysis of Forward-Facing Models versus Backwardfacing Models in Powertrain Component Sizing
,”
IET Hybrid and Electric Vehicles Conference 2013 (HEVC 2013)
, London, UK, pp.
1
6
.
28.
Zeng
,
X.
,
Yang
,
N.
,
Wang
,
J.
,
Song
,
D.
,
Zhang
,
N.
,
Shang
,
M.
, and
Liu
,
J.
,
2015
, “
Predictive-Model-Based Dynamic Coordination Control Strategy for Power-Split Hybrid Electric Bus
,”
Mech. Syst. Signal Process.
,
60–61
, pp.
785
798
.10.1016/j.ymssp.2014.12.016
29.
Sangtarash
,
F.
,
Esfahanian
,
V.
,
Nehzati
,
H.
,
Haddadi
,
S.
,
Bavanpour
,
M. A.
, and
Haghpanah
,
B.
,
2008
, “
Effect of Different Regenerative Braking Strategies on Braking Performance and Fuel Economy in a Hybrid Electric Bus Employing CRUISE Vehicle Simulation
,”
SAE Int. J. Fuels Lubricants
,
1
(
1
), pp.
828
837
.10.4271/2008-01-1561
30.
Wang
,
B. H.
,
Luo
,
Y. G.
, and
Zhang
,
J. W.
,
2008
, “
Simulation of City Bus Performance Based on Actual Urban Driving Cycle in China
,”
Int. J. Automot. Technol.
,
9
(
4
), pp.
501
507
.10.1007/s12239-008-0060-3
31.
Markel
,
T.
,
Brooker
,
A.
,
Hendricks
,
T.
,
Johnson
,
V.
,
Kelly
,
K.
,
Kramer
,
B.
,
O'Keefe
,
M.
,
Sprik
,
S.
, and
Wipke
,
K.
,
2002
, “
ADVISOR: A Systems Analysis Tool for Advanced Vehicle Modeling
,”
J. Power Sources
,
110
(
2
), pp.
255
266
.10.1016/S0378-7753(02)00189-1
32.
Valence Technology,
2016
, “Lithium Iron Magnesium Phosphate 26650 Power Cell,” Valence Technology, Austin, TX.
33.
Nelson
,
R. F.
,
2000
, “
Power Requirements for Batteries in Hybrid Electric Vehicles
,”
J. Power Sources
,
91
(
1
)Nov., pp.
2
26
.10.1016/S0378-7753(00)00483-3
34.
California Air Resource Board
,
2002
, “
Public Transit Bus Fleet Rule and Emission Standards for New Urban Buses
,”
California Air Resource Board
, Sacramento, CA.
35.
Fauvel
,
C.
,
Vikesh
,
N.
, and
Aymeric
,
R.
,
2012
, “
Medium and Heavy Duty Hybrid Electric Vehicle Sizing to Maximize Fuel Consumption Displacement on Real World Drive Cycles
,”
EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium
, Vol. 1, Los Angeles, CA, pp.
1965
1973
.
36.
Ahn
,
K.
, and
Papalambros
,
P. Y.
,
2009
, “
Engine Optimal Operation Lines for Power-Split Hybrid Electric Vehicles
,”
Proc. IMechE
,
223
(
9
), pp.
1149
1162
.10.1243/09544070JAUTO1124
37.
Keramydas
,
C.
,
Papadopoulos
,
G.
,
Ntziachristos
,
L.
,
Lo
,
T.-S.
,
Ng
,
K.-L.
,
Wong
,
H.-L. A.
, and
Wong
,
C. K.-L.
,
2018
, “
Real-World Measurement of Hybrid Buses' Fuel Consumption and Pollutant Emissions in a Metropolitan Urban Road Network
,”
Energies
,
11
(
10
), p.
2569
.10.3390/en11102569
38.
Partridge
,
J.
,
Lin
,
C.
, and
Bucknall
,
R.
,
2016
, “
Fuel Economy of a Current Hybrid London Bus and Fuel Cell Bus Application Evaluation
,” ISEC-SGIT, Coimbra, Portugal.
39.
Lowell
,
D.
,
2013
, “
Comparison of Modern Cng, Diesel and Diesel Hybrid-Electric Transit Buses: Efficiency & Environmental Performance
,” MJ Bradley & Associates, LLC, Concord, MA, Report.
40.
Barlow
,
T. J.
,
Latham
,
S.
,
Mccrae
,
I. S.
, and
Boulter
,
P. G.
,
2009
, “
A Reference Book of Driving Cycles for Use in the Measurement of Road Vehicle Emissions
,” TRL Published Project, Crowthorne, UK, Report No.
01149003
.https://trid.trb.org/view/909274
You do not currently have access to this content.