Abstract

The predictor feedback has been demonstrated to be quite effective in large delay compensation. However, few researches in the field of predictor feedback for large delays focused on output feedback control (OFC). This paper develops the previous work to design high-gain-observer-based predictive output feedback for nonlinear systems with large delays. Two methods are employed for large delay compensation: the backstepping-based partial differential equation (PDE) method and the reduction-based ordinary differential equation (ODE) method. It appears that, for continuous-time control, the first method leads to simpler linear matrix inequality (LMI) conditions and deal with larger delays, whereas the second method is easily exploited for sampled-data implementation under continuous-time measurement. Lyapunov–Krasovskii method is presented to guarantee the exponential stability of the nonlinear systems under predictor-based controllers. Through a simulation example of pendulum, the proposed methods are demonstrated to be efficient when the input delays are too large for the system to be stabilized without a predictor.

References

1.
Battilotti
,
S.
,
2019
, “
Continuous-Time and Sampled-Data Stabilizers for Nonlinear Systems With Input and Measurement Delays
,”
IEEE Trans. Autom. Control
,
65
(
4
), pp.
1568
1583
.10.1109/TAC.2019.2919127
2.
Freirich
,
D.
, and
Fridman
,
E.
,
2016
, “
Decentralized Networked Control of Systems With Local Networks: A Time-Delay Approach
,”
Automatica
,
69
, pp.
201
209
.10.1016/j.automatica.2016.02.037
3.
Gao
,
H.
,
Chen
,
T.
, and
Lam
,
J.
,
2008
, “
A New Delay System Approach to Network-Based Control
,”
Automatica
,
44
(
1
), pp.
39
52
.10.1016/j.automatica.2007.04.020
4.
Gu
,
K.
,
Kharitonov
,
V. L.
, and
Chen
,
J.
,
2003
,
Stability of Time-Delay Systems
,
Birkhäuser
,
Cham, Switzerland
.
5.
Lei
,
J.
, and
Khalil
,
H. K.
,
2016
, “
High-Gain-Predictor-Based Output Feedback Control for Time-Delay Nonlinear Systems
,”
Automatica
,
71
, pp.
324
333
.10.1016/j.automatica.2016.05.026
6.
Liu
,
K.
, and
Fridman
,
E.
,
2012
, “
Wirtinger's Inequality and Lyapunov-Based Sampled-Data Stabilization
,”
Automatica
,
48
(
1
), pp.
102
108
.10.1016/j.automatica.2011.09.029
7.
Park
,
P.
,
Ko
,
J. W.
, and
Jeong
,
C.
,
2011
, “
Reciprocally Convex Approach to Stability of Systems With Time-Varying Delays
,”
Automatica
,
47
(
1
), pp.
235
238
.10.1016/j.automatica.2010.10.014
8.
Fridman
,
E.
,
2014
,
Introduction to Time-Delay Systems: Analysis and Control
,
Birkhauser
,
Cham, Switzerland
.
9.
Zhu
,
Y.
, and
Fridman
,
E.
,
2020
, “
Predictor Methods for Decentralized Control of Large-Scale Systems With Input-Delays
,”
Automatica
,
116
, p.
108903
.10.1016/j.automatica.2020.108903
10.
Zhu
,
Y.
, and
Fridman
,
E.
,
2020
, “
Decentralized Predictor Output Feedback for Large-Scale Systems With Large Delays
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
7527
7532
.10.1016/j.ifacol.2020.12.1346
11.
Smith
,
O. J. M.
,
1959
, “
A Controller to Overcome Dead Time
,”
ISA
,
6
(
2
), pp.
28
33
.
12.
Artstein
,
Z.
,
1982
, “
Linear Systems With Delayed Controls: A Reduction
,”
IEEE Trans. Autom. Control
,
27
(
4
), pp.
869
879
.10.1109/TAC.1982.1103023
13.
Kwon
,
W.
, and
Pearson
,
A.
,
1980
, “
Feedback Stabilization of Linear Systems With Delayed Control
,”
IEEE Trans. Autom. Control
,
25
(
2
), pp.
266
269
.10.1109/TAC.1980.1102288
14.
Manitius
,
A. W. O. A. Z.
, and
Olbrot
,
A.
,
1979
, “
Finite Spectrum Assignment Problem for Systems With Delays
,”
IEEE Trans. Autom. Control
,
24
(
4
), pp.
541
552
.10.1109/TAC.1979.1102124
15.
Mazenc
,
F.
, and
Normand-Cyrot
,
D.
,
2013
, “
Reduction Model Approach for Linear Systems With Sampled Delayed Inputs
,”
IEEE Trans. Autom. Control
,
58
(
5
), pp.
1263
1268
.10.1109/TAC.2013.2254193
16.
Yue
,
D.
, and
Han
,
Q.-L.
,
2005
, “
Delayed Feedback Control of Uncertain Systems With Time-Varying Input Delay
,”
Automatica
,
41
(
2
), pp.
233
240
.10.1016/j.automatica.2004.09.006
17.
Zhou
,
B.
,
Lin
,
Z.
, and
Duan
,
G.-R.
,
2012
, “
Truncated Predictor Feedback for Linear Systems With Long Time-Varying Input Delays
,”
Automatica
,
48
(
10
), pp.
2387
2399
.10.1016/j.automatica.2012.06.032
18.
Krstic
,
M.
,
2009
,
Delay Compensation for Nonlinear, Adaptive, and PDE Systems
,
Birkhauser
,
Cham, Switzerland
.
19.
Bekiaris-Liberis
,
N.
, and
Krstic
,
M.
,
2010
, “
Stabilization of Linear Strict-Feedback Systems With Delayed Integrators
,”
Automatica
,
46
(
11
), pp.
1902
1910
.10.1016/j.automatica.2010.07.008
20.
Karafyllis
,
I.
, and
Krstic
,
M.
,
2013
, “
Delay-Robustness of Linear Predictor Feedback Without Restriction on Delay Rate
,”
Automatica
,
49
(
6
), pp.
1761
1767
.10.1016/j.automatica.2013.02.019
21.
Sanz
,
R.
,
García
,
P.
, and
Krstic
,
M.
,
2019
, “
Robust Compensation of Delay and Diffusive Actuator Dynamics Without Distributed Feedback
,”
IEEE Trans. Autom. Control
,
64
(
9
), pp.
3663
3675
.10.1109/TAC.2018.2887148
22.
Tsubakino
,
D.
,
Krstic
,
M.
, and
Oliveira
,
T. R.
,
2016
, “
Exact Predictor Feedbacks for Multi-Input LTI Systems With Distinct Input Delays
,”
Automatica
,
71
, pp.
143
150
.10.1016/j.automatica.2016.04.047
23.
Zhu
,
Y.
,
Krstic
,
M.
, and
Su
,
H.
,
2017
, “
Adaptive Output Feedback Control for Uncertain Linear Time-Delay Systems
,”
IEEE Trans. Autom. Control
,
62
(
2
), pp.
545
560
.10.1109/TAC.2016.2555479
24.
Zhu
,
Y.
,
Krstic
,
M.
, and
Su
,
H.
,
2018
, “
PDE Boundary Control of Multi-Input LTI Systems With Distinct and Uncertain Input Delays
,”
IEEE Trans. Autom. Control
,
63
(
12
), pp.
4270
4277
.10.1109/TAC.2018.2810038
25.
Bekiaris-Liberis
,
N.
, and
Krstic
,
M.
,
2013
, “
Compensation of State-Dependent Input Delay for Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
58
(
2
), pp.
275
289
.10.1109/TAC.2012.2208294
26.
Bekiaris-Liberis
,
N.
, and
Krstic
,
M.
,
2013
, “
Robustness of Nonlinear Predictor Feedback Laws to Time-and State-Dependent Delay Perturbations
,”
Automatica
,
49
(
6
), pp.
1576
1590
.10.1016/j.automatica.2013.02.050
27.
Bekiaris-Liberis
,
N.
, and
Krstic
,
M.
,
2016
, “
Predictor-Feedback Stabilization of Multi-Input Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
62
(
2
), pp.
516
531
.
28.
Karafyllis
,
I.
, and
Krstic
,
M.
,
2017
,
Predictor Feedback for Delay Systems: Implementations and Approximations
,
Birkhauser
,
Cham, Switzerland
.
29.
Mamadou
,
D.
,
Bekiaris-Liberis
,
N.
, and
Krstic
,
M.
,
2017
, “
Compensation of Input Delay That Depends on Delayed Input
,”
Automatica
,
8
5, pp.
362
373
.
30.
Choi
,
J. Y.
, and
Krstic
,
M.
,
2016
, “
Compensation of Time-Varying Input Delay for Discrete-Time Nonlinear Systems
,”
Int. J. Robust Nonlinear Control
,
26
(
8
), pp.
1755
1776
.10.1002/rnc.3382
31.
Karafyllis
,
I.
, and
Krstic
,
M.
,
2011
, “
Nonlinear Stabilization Under Sampled and Delayed Measurements, and With Inputs Subject to Delay and Zero-Order Hold
,”
IEEE Trans. Autom. Control
,
57
(
5
), pp.
1141
1154
.
32.
Monaco
,
S.
,
Normand-Cyrot
,
D.
, and
Mattioni
,
M.
,
2017
, “
Sampled-Data Stabilization of Nonlinear Dynamics With Input Delays Through Immersion and Invariance
,”
IEEE Trans. Autom. Control
,
62
(
5
), pp.
2561
2567
.10.1109/TAC.2016.2601302
33.
Olfati-Saber
,
R.
,
2001
, “
Nonlinear Control of Underactuated Mechanical Systems With Application to Robotics and Aerospace Vehicles
,” Ph.D. dissertation, Department of Electrical Engineering and Computer Science,
MIT, Cambridge, MA
.
34.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.