Abstract

This paper introduces a novel approach for designing estimators to achieve consensus in uncertain multi-agent systems (MAS), even when various fault conditions are present and communication is assumed to be undirected and connected. The method includes an adaptive fault detection technique to detect faults and a unique adaptation in the unscented Kalman filter (UKF) to adjust noise covariance matrices and reconstruct uncertain states in the MAS is proposed in the framework of Q-learning. Additionally, it involves training neural network internal parameters using previous measurements. A Chebyshev neural network (CNN) is employed to model the uncertain plant, and a hyperbolic tangent-based robust control term is used to mitigate neural network approximation errors. This novel approach is known as reinforced UKF (RUKF). The paper also discusses the asymptotic stability of the proposed method and presents numerical simulations to demonstrate its effectiveness with reduced computational load.

References

1.
Liu
,
X.
,
Gao
,
X.
, and
Han
,
J.
,
2020
, “
Distributed Fault Estimation for a Class of Nonlinear Multiagent Systems
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
50
(
9
), pp.
3382
3390
.10.1109/TSMC.2018.2876370
2.
Chadli
,
M.
,
Davoodi
,
M.
, and
Meskin
,
N.
,
2017
, “
Distributed State Estimation, Fault Detection, and Isolation Filter Design for Heterogeneous Multi-Agent Linear Parameter-Varying Systems
,”
IET Control Theory Appl.
,
11
(
2
), pp.
254
262
.10.1049/iet-cta.2016.0912
3.
Wang
,
C.
,
Wen
,
C.
, and
Guo
,
L.
,
2021
, “
Adaptive Consensus Control for Nonlinear Multiagent Systems With Unknown Control Directions and Time-Varying Actuator Faults
,”
IEEE Trans. Autom. Control
,
66
(
9
), pp.
4222
4229
.10.1109/TAC.2020.3034209
4.
Luo
,
S.
, and
Ye
,
D.
,
2019
, “
Adaptive Double Event-Triggered Control for Linear Multi-Agent Systems With Actuator Faults
,”
IEEE Trans. Circuits Syst. I: Regular Pap.
,
66
(
12
), pp.
4829
4839
.10.1109/TCSI.2019.2932084
5.
Qin
,
J.
,
Gaosheng
,
Z.
,
Zheng
,
W. X.
, and
Kang
,
Y.
,
2019
, “
Adaptive Sliding Mode Consensus Tracking for Second-Order Nonlinear Multiagent Systems With Actuator Faults
,”
IEEE Trans. Cybern.
,
49
(
5
), pp.
1605
1615
.10.1109/TCYB.2018.2805167
6.
Yang
,
P.
,
Xu
,
M.
,
Li
,
D.
,
Liu
,
Z.
, and
Huang
,
Y.
,
2019
, “
Distributed Fault-Tolerant Consensus Control for Multi-Agent System With Actuator Fault Based on the Adaptive Observer
,”
Trans. Inst. Meas. Control
,
41
(
15
), pp.
4207
4217
.10.1177/0142331219853075
7.
Zhang
,
K.
,
Liu
,
G.
, and
Jiang
,
B.
,
2016
, “
Robust Unknown Input Observer-Based Fault Estimation of Leader-Follower Linear Multi-Agent Systems
,”
Circuits, Syst., Signal Process.
,
36
(
2
), pp.
525
542
.10.1007/s00034-016-0313-8
8.
Jin
,
X.
,
Lu
,
S.
, and
Yu
,
J.
,
2021
, “
Adaptive NN-Based Consensus for a Class of Nonlinear Multiagent Systems With Actuator Faults and Faulty Networks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
33
(
8
), pp.
3474
3486
.10.1109/TNNLS.2021.3053112
9.
Zhong
,
Y. J.
,
Lyu
,
G. R.
,
He
,
X.
,
Zhang
,
Y. M.
, and
Ge
,
S. S.
,
2021
, “
Distributed Active Fault Tolerant Cooperative Control for Multiagent Systems With Communication Delays and External Disturbances
,”
IEEE Trans. Cybern.
,
53
(
7
), pp.
4642
4652
.10.1109/TCYB.2021.3133463
10.
Wang
,
B. H.
,
Wang
,
J. C.
,
Zhang
,
B.
,
Chen
,
W. S.
, and
Zhang
,
Z. Q.
,
2018
, “
Leader-Follower Consensus of Multivehicle Wirelessly Networked Uncertain Systems Subject to Non-Linear Dynamics and Actuator Fault
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
2
), pp.
492
505
.10.1109/TASE.2016.2635979
11.
Wu
,
Y.
,
Wang
,
Z.
,
Ding
,
S.
, and
Zhang
,
H.
,
2018
, “
Leader–Follower Consensus of Multi-Agent Systems in Directed Networks With Actuator Faults
,”
Neurocomputing
,
275
, pp.
1177
1185
.10.1016/j.neucom.2017.09.066
12.
Deng
,
C.
, and
Yang
,
G.-H.
,
2019
, “
Distributed Adaptive Fault-Tolerant Control Approach to Cooperative Output Regulation for Linear Multi-Agent Systems
,”
Automatica
,
103
, pp.
62
68
.10.1016/j.automatica.2019.01.013
13.
Xiao
,
B.
, and
Yin
,
S.
,
2018
, “
An Intelligent Actuator Fault Reconstruction Scheme for Robotic Manipulators
,”
IEEE Trans. Cybern.
,
48
(
2
), pp.
639
647
.10.1109/TCYB.2017.2647855
14.
Zhang
,
K.
,
Jiang
,
B.
,
Shi
,
P.
, and
Xu
,
J.
,
2015
, “
Analysis and Design of Robust H8 Fault Estimation Observer With Finite-Frequency Specifications for Discrete-Time Fuzzy Systems
,”
IEEE Trans. Cybern.
,
45
(
7
), pp.
1225
1235
.10.1109/TCYB.2014.2347697
15.
Han
,
J.
,
Liu
,
X.
,
Gao
,
X.
, and
Wei
,
X.
,
2020
, “
Intermediate Observer-Based Robust Distributed Fault Estimation for Nonlinear Multiagent Systems With Directed Graphs
,”
IEEE Trans. Ind. Inf.
,
16
(
12
), pp.
7426
7436
.10.1109/TII.2019.2958988
16.
Chen
,
W.
, and
Chowdhury
,
F. N.
,
2010
, “
A Synthesized Design of Sliding-Mode and Luenberger Observers for Early Detection of Incipient Faults
,”
Int. J. Adapt. Control Signal Process.
,
24
(
12
), pp.
1021
1035
.10.1002/acs.1170
17.
Demetriou
,
M. A.
, and
Polycarpou
,
M. M.
,
1998
, “
Incipient Fault Diagnosis of Dynamical Systems Using Online Approximators
,”
IEEE Trans. Autom. Control
,
43
(
11
), pp.
1612
1617
.10.1109/9.728881
18.
Cai
,
M.
,
Xiang
,
Z.
, and
Guo
,
J.
,
2016
, “
Adaptive Finite-Time Consensus Protocols for Multi-Agent Systems by Using Neural Networks
,”
IET Control Theory Appl.
,
10
(
4
), pp.
371
380
.10.1049/iet-cta.2015.0915
19.
Khalili
,
M.
,
Zhang
,
X.
,
Polycarpou
,
M. M.
,
Parisini
,
T.
, and
Cao
,
Y.
,
2018
, “
Distributed Adaptive Fault-Tolerant Control of Uncertain Multi-Agent Systems
,”
Automatica
,
87
, pp.
142
151
.10.1016/j.automatica.2017.09.002
20.
Li
,
Y.
,
Wang
,
C.
,
Cai
,
X.
,
Li
,
L.
, and
Wang
,
G.
,
2019
, “
Neural-Network-Based Distributed Adaptive Asymptotically Consensus Tracking Control for Nonlinear Multiagent Systems With Input Quantization and Actuator Faults
,”
Neurocomputing
,
349
, pp.
64
76
.10.1016/j.neucom.2019.04.018
21.
Dong
,
G.
,
Li
,
H.
,
Ma
,
H.
, and
Lu
,
R.
,
2020
, “
Finite-Time Consensus Tracking Neural Network FTC of Multi-Agent Systems
,”
IEEE Trans. Neural Networks Learn. Syst.
,
32
(
2
), pp.
653
662
.10.1109/TNNLS.2020.2978898
22.
Chen
,
Y.
,
Zhu
,
S.
,
Shen
,
M.
,
Liu
,
X.
, and
Wen
,
S.
,
2024
, “
Event-Based Output Quantized Synchronization Control for Multiple Delayed Neural Networks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
35
(
1
), pp.
428
438
.10.1109/TNNLS.2022.3175027
23.
Shen
,
M.
,
Ma
,
Y.
,
Park
,
J. H.
, and
Wang
,
Q.-G.
,
2022
, “
Fuzzy Tracking Control for Markov Jump Systems With Mismatched Faults by Iterative Proportional-Integral Observers
,”
IEEE Trans. Fuzzy Syst.
,
30
(
2
), pp.
542
554
.10.1109/TFUZZ.2020.3041589
24.
Han
,
L.
,
Sun
,
P.
,
Du
,
Y.
,
Xiong
,
J.
,
Wang
,
Q.
,
Sun
,
X.
,
Liu
,
H.
, and
Zhang
,
T.
,
2019
, “
Grid-Wise Control for Multi-Agent Reinforcement Learning in Video Game AI
,”
Proceedings of the 36th International Conference on Machine Learning
,
Long Beach, CA
, June 9–15, pp.
2576
2585
.https://proceedings.mlr.press/v97/han19a.html
25.
Li
,
H.
,
Wu
,
Y.
, and
Chen
,
M.
,
2021
, “
Adaptive Fault Tolerant Tracking Control for Discrete Time Multi-Agent Systems Via Reinforcement Learning Algorithm
,”
IEEE Trans. Cybern.
,
51
(
3
), pp.
1163
1174
.10.1109/TCYB.2020.2982168
26.
Zou
,
A. M.
,
Kumar
,
K. D.
, and
Hou
,
Z. G.
,
2013
, “
Distributed Consensus Control for Multi-Agent Systems Using Terminal Sliding Mode and Chebyshev Neural Networks
,”
Int. J. Robust Nonlinear Control
,
23
(
3
), pp.
334
357
.10.1002/rnc.1829
27.
Hajiyev
,
C.
, and
Soken
,
H. E.
,
2014
, “
Robust Adaptive Unscented Kalman Filter for Attitude Estimation of Pico Satellites
,”
Int. J. Adapt. Control Signal Process.
,
28
(
2
), pp.
107
120
.10.1002/acs.2393
28.
Rahimi
,
A.
,
Dev
,
K. K.
, and
Alighanbari
,
H.
,
2017
, “
Fault Estimation of Satellite Reaction Wheels Using Covariance-Based Adaptive Unscented Kalman Filter
,”
Acta Astronaut.
,
134
, pp.
159
169
.10.1016/j.actaastro.2017.02.003
29.
Borah
,
K. J.
, and
Kumar
,
K. D.
,
2023
, “
Reinforced Unscented Kalman Filter for Consensus Achievement of Uncertain Multi-Agent Systems Subject to Actuator Faults
,”
Int. J. Robust Nonlinear Control
,
33
(
18
), pp.
10867
10892
.10.1002/rnc.6913
30.
Borah
,
K. J.
, and
Kumar
,
K. D.
,
2023
, “
Consensus Tracking of Multi-Agent Systems in Presence of Uncertain Dynamics and Communications Faults
,”
IEEE Access
,
11
, pp.
120304
120318
.10.1109/ACCESS.2023.3320063
You do not currently have access to this content.