Abstract

Multirobot systems (MRS) consist of multiple autonomous robots that collaborate to perform tasks more efficiently than single-robot systems. These systems enhance flexibility, enabling applications in areas such as environmental monitoring, search and rescue, and agricultural automation while addressing challenges related to coordination, communication, and task assignment. Model predictive control (MPC) stands out as a promising controller for multirobot control due to its preview capability and effective constraint handling. However, MPC's performance heavily relies on the chosen length of the prediction horizon. Extending the prediction horizon significantly raises computation costs, making its tuning time-consuming and task-specific. To address this challenge, we introduce a framework utilizing a Collective Reinforcement Learning strategy to generate the prediction horizon dynamically based on the states of the robots. We propose that the prediction horizon of any robot in MRS depends on the states of all the robots. Additionally, we propose a versatile on-demand collision avoidance (VODCA) strategy to enable on-the-fly collision avoidance for multiple robots operating under varying prediction horizons. This approach establishes a better tradeoff between performance and computation costs, allowing for adaptable prediction horizons for each robot at every time-step. Numerical studies are performed to investigate the scalability of the proposed framework, the stiffness of the learned reinforcement learning (RL) policy, and the comparison with the fixed horizon and existing variable horizon MPC methods. The framework is also implemented on multiple TurtleBot3 Waffle Pi for various multirobot tasks.

References

1.
Dias
,
M. B.
,
Zlot
,
R.
,
Kalra
,
N.
, and
Stentz
,
A.
,
2006
, “
Market-Based Multirobot Coordination: A Survey and Analysis
,”
Proc. IEEE
,
94
(
7
), pp.
1257
1270
.10.1109/JPROC.2006.876939
2.
Rizk
,
Y.
,
Awad
,
M.
, and
Tunstel
,
E. W.
,
2020
, “
Cooperative Heterogeneous Multi-Robot Systems: A Survey
,”
ACM Comput. Surv.
,
52
(
2
), pp.
1
31
.10.1145/3303848
3.
Borah
,
K. J.
,
2024
, “
Nonlinear Filtering and Reinforcement Learning Based Consensus Achievement of Uncertain Multi-Agent Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
146
(
3
), p.
031009
.10.1115/1.4064601
4.
Shobeiry
,
P.
, and
Xin
,
M.
,
2021
, “
An Optimal Control Approach for Consensus of General Linear Time-Invariant Multi-Agent Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
143
(
9
), p.
091002
.10.1115/1.4050505
5.
Omotuyi
,
O.
, and
Kumar
,
M.
,
2024
, “
Learning Scalable Decentralized Controllers for Heterogeneous Robot Swarms With Graph Neural Networks
,”
ASME J. Dyn. Sys., Meas., Control
,
146
(
6
), p. 061107.10.1115/1.4065757
6.
Zhu
,
E. L.
,
Stürz
,
Y. R.
,
Rosolia
,
U.
, and
Borrelli
,
F.
,
2020
, “
Trajectory Optimization for Nonlinear Multi-Agent Systems Using Decentralized Learning Model Predictive Control
,” IEEE Conference Decision Control (
CDC
), Jeju, Korea (South), Dec. 14–18, pp.
6198
6203
.10.1109/CDC42340.2020.9303903
7.
Gonzalez
,
R.
,
Fiacchini
,
M.
,
Guzmán
,
J. L.
, and
Alamo
,
T.
,
2009
, “
Robust Tube-Based MPC for Constrained Mobile Robots Under Slip Conditions
,” IEEE Conference Decision Control (
CDC
), Shanghai, China, Dec. 15–18, pp.
5985
5990
.10.1109/CDC.2009.5400508
8.
Xu
,
S.
,
Zhang
,
W.
,
Zhu
,
L.
, and
Ho
,
C. P.
,
2023
, “
Distributed Model Predictive Formation Control With Gait Synchronization for Multiple Quadruped Robots
,” IEEE International Conference Robotics Automation (
ICRA
), London, UK, May 29–June 2, pp.
9995
10002
.10.1109/ICRA48891.2023.10161260
9.
Liu
,
K.
,
Dong
,
L.
,
Tan
,
X.
,
Zhang
,
W.
, and
Zhu
,
L.
,
2024
, “
Optimization-Based Flocking Control and MPC-Based Gait Synchronization Control for Multiple Quadruped Robots
,”
IEEE Rob. Autom. Lett.
,
9
(
2
), pp.
1929
1936
.10.1109/LRA.2024.3350372
10.
Tallamraju
,
R.
,
Salunkhe
,
D. H.
,
Rajappa
,
S.
,
Ahmad
,
A.
,
Karlapalem
,
K.
, and
Shah
,
S. V.
,
2019
, “
Motion Planning for Multi-Mobile-Manipulator Payload Transport Systems
,” Conference Automation Science Engineering (
CASE
), Vancouver, BC, Canada, Aug. 22–26, pp.
1469
1474
.10.1109/COASE.2019.8842840
11.
Park
,
S.
, and
Lee
,
S.-M.
,
2023
, “
Formation Reconfiguration Control With Collision Avoidance of Nonholonomic Mobile Robots
,”
IEEE Rob. Autom. Lett.
,
8
(
12
), pp.
7905
7912
.10.1109/LRA.2023.3324593
12.
Schwenzer
,
M.
,
Ay
,
M.
,
Bergs
,
T.
, and
Abel
,
D.
,
2021
, “
Review on Model Predictive Control: An Engineering Perspective
,”
J. Adv. Manuf. Technol.
,
117
(
5–6
), pp.
1327
1349
.10.1007/s00170-021-07682-3
13.
Song
,
Y.
, and
Scaramuzza
,
D.
,
2022
, “
Policy Search for Model Predictive Control With Application to Agile Drone Flight
,”
IEEE Trans. Robot.
,
38
(
4
), pp.
2114
2130
.10.1109/TRO.2022.3141602
14.
Shin
,
J.
,
Hakobyan
,
A.
,
Park
,
M.
,
Kim
,
Y.
,
Kim
,
G.
, and
Yang
,
I.
,
2022
, “
Infusing Model Predictive Control Into Meta-Reinforcement Learning for Mobile Robots in Dynamic Environments
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
10065
10072
.10.1109/LRA.2022.3191234
15.
Norby
,
J.
,
Tajbakhsh
,
A.
,
Yang
,
Y.
, and
Johnson
,
A. M.
,
2024
, “
Adaptive Complexity Model Predictive Control
,”
IEEE Trans. Robot.
,
40
, pp.
4615
4634
.10.1109/TRO.2024.3410408
16.
Scokaert
,
P. O.
, and
Mayne
,
D. Q.
,
1998
, “
Min-Max Feedback Model Predictive Control for Constrained Linear Systems
,”
IEEE Trans. Autom. control
,
43
(
8
), pp.
1136
1142
.10.1109/9.704989
17.
Richards
,
A.
, and
How
,
J. P.
,
2006
, “
Robust Variable Horizon Model Predictive Control for Vehicle Maneuvering
,”
Int. J. Robust Nonlinear Control
,
16
(
7
), pp.
333
351
.10.1002/rnc.1059
18.
Muehlebach
,
M.
, and
D'Andrea
,
R.
,
2019
, “
A Method for Reducing the Complexity of Model Predictive Control in Robotics Applications
,”
IEEE Rob. Autom. Lett.
,
4
(
3
), pp.
2516
2523
.10.1109/LRA.2019.2907411
19.
Daneshmand
,
E.
,
Khadiv
,
M.
,
Grimminger
,
F.
, and
Righetti
,
L.
,
2021
, “
Variable Horizon Mpc With Swing Foot Dynamics for Bipedal Walking Control
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
2349
2356
.10.1109/LRA.2021.3061381
20.
Droge
,
G.
, and
Egerstedt
,
M.
,
2011
, “
Adaptive Time Horizon Optimization in Model Predictive Control
,”
American Control Conference
, San Francisco, CA, June 29–July 1, pp.
1843
1848
.10.1109/ACC.2011.5990855
21.
Krener
,
A. J.
,
2018
, “
Adaptive Horizon Model Predictive Control
,”
IFAC-PapersOnLine
,
51
(
13
), pp.
31
36
.10.1016/j.ifacol.2018.07.250
22.
He
,
N.
,
Chen
,
S.
,
Xu
,
Z.
,
Cheng
,
F.
,
Li
,
R.
, and
Gao
,
F.
,
2024
, “
A Differential Error-Based Self-Triggered Model Predictive Control With Adaptive Prediction Horizon for Discrete Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
146
(
2
), p.
021006
.10.1115/1.4063908
23.
Sun
,
Z.
,
Li
,
C.
,
Zhang
,
J.
, and
Xia
,
Y.
,
2022
, “
Dynamic Event-Triggered MPC With Shrinking Prediction Horizon and Without Terminal Constraint
,”
IEEE Trans. Cybern.
,
52
(
11
), pp.
12140
12149
.10.1109/TCYB.2021.3081731
24.
Sun
,
Z.
,
Dai
,
L.
,
Liu
,
K.
,
Dimarogonas
,
D. V.
, and
Xia
,
Y.
,
2019
, “
Robust Self-Triggered MPC With Adaptive Prediction Horizon for Perturbed Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
64
(
11
), pp.
4780
4787
.10.1109/TAC.2019.2905223
25.
Sun
,
Z.
,
Xia
,
Y.
,
Dai
,
L.
, and
Campoy
,
P.
,
2020
, “
Tracking of Unicycle Robots Using Event-Based MPC With Adaptive Prediction Horizon
,”
IEEE/ASME Trans. Mechatronics
,
25
(
2
), pp.
739
749
.10.1109/TMECH.2019.2962099
26.
Wang
,
P.-B.
,
Ren
,
X.-M.
, and
Zheng
,
D.-D.
,
2023
, “
Robust Nonlinear MPC With Variable Prediction Horizon: An Adaptive Event-Triggered Approach
,”
IEEE Trans. Autom. Control
,
68
(
6
), pp.
3806
3813
.10.1109/TAC.2022.3200967
27.
Li
,
P.
,
Kang
,
Y.
,
Zhao
,
Y.-B.
, and
Wang
,
T.
,
2021
, “
Networked Dual-Mode Adaptive Horizon MPC for Constrained Nonlinear Systems
,”
IEEE Trans. Syst., Man, Cybern. Syst
,.,
51
(
12
), pp.
7435
7449
.10.1109/TSMC.2020.2971241
28.
Yang
,
Y.
,
Xu
,
H.
, and
Yao
,
X.
,
2024
, “
Disturbance Rejection Self-Triggered Distributed MPC With Adaptive Prediction Horizon for Asynchronous Multiagent Systems
,”
IEEE Trans. Syst., Man, Cybern. Syst.
,
54
(
5
), pp.
2797
2809
.10.1109/TSMC.2024.3350157
29.
Li
,
P.
,
Wang
,
S.
,
Yang
,
H.
, and
Zhao
,
H.
,
2022
, “
Trajectory Tracking and Obstacle Avoidance for Wheeled Mobile Robots Based on EMPC With an Adaptive Prediction Horizon
,”
IEEE Trans. Cybern.
,
52
(
12
), pp.
13536
13545
.10.1109/TCYB.2021.3125333
30.
Krishnamoorthy
,
D.
,
Biegler
,
L. T.
, and
Jäschke
,
J.
,
2020
, “
Adaptive Horizon Economic Nonlinear Model Predictive Control
,”
J. Process Control
,
92
, pp.
108
118
.10.1016/j.jprocont.2020.05.013
31.
Dong
,
H.
,
Zhuang
,
W.
,
Wu
,
G.
,
Li
,
Z.
,
Yin
,
G.
, and
Song
,
Z.
,
2024
, “
Overtaking-Enabled Eco-Approach Control at Signalized Intersections for Connected and Automated Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
25
(
5
), pp.
4527
4539
.10.1109/TITS.2023.3328022
32.
Lin
,
M.
,
Sun
,
Z.
,
Xia
,
Y.
, and
Zhang
,
J.
,
2024
, “
Reinforcement Learning-Based Model Predictive Control for Discrete-Time Systems
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
35
(
3
), pp.
3312
3324
.10.1109/TNNLS.2023.3273590
33.
Bøhn
,
E.
,
Gros
,
S.
,
Moe
,
S.
, and
Johansen
,
T. A.
,
2021
, “
Reinforcement Learning of the Prediction Horizon in Model Predictive Control
,”
IFAC-PapersOnLine
,
54
(
6
), pp.
314
320
.10.1016/j.ifacol.2021.08.563
34.
Bøhn
,
E.
,
Gros
,
S.
,
Moe
,
S.
, and
Johansen
,
T. A.
,
2023
, “
Optimization of the Model Predictive Control Meta-Parameters Through Reinforcement Learning
,”
Eng. Appl. Artif. Intell.
,
123
, p.
106211
.10.1016/j.engappai.2023.106211
35.
Gupta
,
S.
,
Chaudhary
,
S.
,
Maurya
,
D.
,
Joshi
,
S. K.
,
Tripathy
,
N. S.
, and
Shah
,
S. V.
,
2022
, “
Segregation of Multiple Robots Using Model Predictive Control With Asynchronous Path Smoothing
,” IEEE Conference of Control Technology Application (
CCTA
), Trieste, Italy, Aug. 23–25, pp.
1378
1383
.10.1109/CCTA49430.2022.9966011
36.
Luis
,
C. E.
, and
Schoellig
,
A. P.
,
2019
, “
Trajectory Generation for Multiagent Point-to-Point Transitions Via Distributed Model Predictive Control
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
375
382
.10.1109/LRA.2018.2890572
37.
Haarnoja
,
T.
,
Zhou
,
A.
,
Abbeel
,
P.
, and
Levine
,
S.
,
2018
, “
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning With a Stochastic Actor
,”
ICML
, Stockholm, Sweden, July 10–15, pp.
1861
1870
.https://proceedings.mlr.press/v80/haarnoja18b/haarnoja18b.pdf
You do not currently have access to this content.