The paper presents use of an artificial neural network (ANN) for predicting the thermal-flow behavior of a solid oxide fuel cell with no algorithmic solution merely by utilizing available experimental data. The error backpropagation algorithm was used for an ANN training procedure.
Issue Section:
Research Papers
References
1.
Bartela
, Ł.
, Skorek-Osikowska
, A.
, and Kotowicz
, J.
, 2012
, “Integration of a Supercritical Coal-Fired Heat and Power Plant With Carbon Capture Installation and Gas Turbine
,” Rynek Energii
, 100
(3
), pp. 56
–62
.2.
Jannelli
, E.
Minutillo
, M.
, and Perna
, A.
, 2013
, “Analyzing Microcogeneration Systems Based on LT-PEMFC and HT-PEMFC by Energy Balances
,” Appl. Energy
, 108
, pp. 82
–91
.10.1016/j.apenergy.2013.02.0673.
Bakalis
, D.
, and Stamatis
, A.
, 2013
, “Incorporating Available Micro Gas Turbines and Fuel Cell: Matching Considerations and Performance Evaluation
,” Appl. Energy
, 103
, pp. 607
–617
.10.1016/j.apenergy.2012.10.0264.
Kupecki
, J.
, Jewulski
, J.
, and Badyda
, K.
, 2013
, “Comparative Study of Biogas and DME Fed Micro-CHP System With Solid Oxide Fuel Cell
,” Appl. Mech. Mater.
, 267
, pp. 53
–56
.10.4028/www.scientific.net/AMM.267.535.
Jeong
, H.
, Cho
, S.
, Kim
, D.
, Pyun
, H.
, Ha
, D.
, Han
, C.
, Kang
, M.
, Jeong
, M.
, and Lee
, S.
, 2012
, “A Heuristic Method of Variable Selection Based on Principal Component Analysis and Factor Analysis for Monitoring in a 300 kW MCFC Power Plant
,” Int. J. Hydrogen Energy
, 37
(15
), pp. 11394
–11400
.10.1016/j.ijhydene.2012.04.1356.
Sanchez
, D.
, Monje
, B.
, Chacartegui
, R.
, and Campanari
, S.
, 2013
, “Potential of Molten Carbonate Fuel Cells to Enhance the Performance of CHP Plants in Sewage Treatment Facilities
,” Int. J. Hydrogen Energy
, 38
(1
), pp. 394
–405
.10.1016/j.ijhydene.2012.09.1457.
De Lorenzo
, G.
, and Fragiacomo
, P.
, 2012
, “A Methodology for Improving the Performance of Molten Carbonate Fuel Cell/Gas Turbine Hybrid Systems
,” Int. J. Energy Res.
, 36
(1
), pp. 96
–110
.10.1002/er.17898.
Discepoli
, G.
, Cinti
, G.
, Desideri
, U.
, Penchini
, D.
, and Proietti
, S.
, 2012
, “Carbon Capture With Molten Carbonate Fuel Cells: Experimental Tests and Fuel Cell Performance Assessment
,” Int. J. Greenhouse Gas Control
, 9
, pp. 372
–384
.10.1016/j.ijggc.2012.05.0029.
W.
Budzianowski
, 2012
, “Sustainable Biogas Energy in Poland: Prospects and Challenges
,” Renewable and Sustainable Energy Reviews
, 16
(1
), pp. 342
–349
.10.1016/j.rser.2011.07.16110.
Qian
, J.
, Tao
, Z.
, Xiao
, J.
, Jiang
, G.
, and Liu
, W.
, 2013
, “Performance Improvement of Ceria-Based Solid Oxide Fuel Cells With Yttria-Stabilized Zirconia as an Electronic Blocking Layer by Pulsed Laser Deposition
,” Int. J. Hydrogen Energy
, 38
(5
), pp. 2407
–2412
.10.1016/j.ijhydene.2012.11.11211.
Marzooghi
, H.
, Raoofat
, M.
, Dehghani
, M.
, and Elahi
, G.
, 2012
, “Dynamic Modeling of Solid Oxide Fuel Cell Stack Based on Local Linear Model Tree Algorithm
,” Int. J. Hydrogen Energy
, 37
(5
), pp. 4367
–4376
.10.1016/j.ijhydene.2011.11.14912.
Pianko-Oprych
, P.
, and Jaworski
, Z.
, 2012
, “Numerical Modelling of the Micro-Tubular Solid Oxide Fuel Cell Stacks (Przeglad Metod Modelowania Numerycznego Mikrorurowych Stałotlenkowych Stosów Ogniw Paliwowych)
,” Przemysl Chemiczny
, 91
(9
), pp. 1813
–1815
.13.
Arriagada
, J.
, Olausson
, P.
, and Selimovic
, A.
, 2002
, “Artificial Neural Network Simulator for SOFC Performance Prediction
,” J. Power Sources
, 112
(1
), pp. 54
–60
.10.1016/S0378-7753(02)00314-214.
Jurado
, F.
, 2003
, “Power Supply Quality Improvement With a SOFC Plant by Neural-Network-Based Control
,” J. Power Sources
, 117
(1–2
), pp. 75
–83
.10.1016/S0378-7753(03)00309-415.
Huo
, H.
, Zhu
, X.
, and Cao
, G.
, 2006
, “Nonlinear Modeling of a SOFC Stack Based on a Least Squares Support Vector Machine
,” J. Power Sources
, 162
(2
), pp. 1220
–1225
.10.1016/j.jpowsour.2006.07.03116.
Wu
, X.
Zhu
, X.
Cao
, G.
Tu
, H.
, 2007
, Nonlinear Modelling of a SOFC Stack by Improved Neural Networks Identification
, Vol. 8
, Zhejiang University Press
, Hangzhou, China, pp. 1505
–1509
.17.
Wu
, X.
, Zhu
, X.
, Cao
, G.
, and Tu
, H.
, 2007
, “Modeling a SOFC Stack Based on GA-RBF Neural Networks Identification
,” J. Power Sources
, 167
(1
), pp. 145
–150
.10.1016/j.jpowsour.2007.01.08618.
Entchev
, E.
, and Yang
, L.
, 2007
, “Application of Adaptive Neuro-Fuzzy Inference System Techniques and Artificial Neural Networks to Predict Solid Oxide Fuel Cell Performance in Residential Microgeneration Installation
,” J. Power Sources
, 170
(1
), pp. 122
–129
.10.1016/j.jpowsour.2007.04.01519.
Milewski
, J.
, and Świrski
, K.
, 2009
, “Modelling the SOFC Behaviors by Artificial Neural Network
,” Int. J. Hydrogen Energy
, 34
(13
), pp. 5546
–5553
.10.1016/j.ijhydene.2009.04.06820.
Milewski
, J.
, Świrski
, K.
, Santarelli
, M.
, and Leone
, P.
, 2011
, Advanced Methods of Solid Oxide Fuel Cell Modeling
, 1st ed., Springer-Verlag, London
.21.
Bozorgmehri
, S.
, and Hamedi
, M.
, 2012
, “Modeling and Optimization of Anode-Supported Solid Oxide Fuel Cells on Cell Parameters Via Artificial Neural Network and Genetic Algorithm
,” Fuel Cells
, 12
(1
), pp. 11
–23
.10.1002/fuce.20110014022.
Marra
, D.
, Sorrentino
, M.
, Pianese
, C.
, and Iwanschitz
, B.
, 2013
, “A Neural Network Estimator of Solid Oxide Fuel Cell Performance for On-Field Diagnostics and Prognostics Applications
,” J. Power Sources
, 241
, pp. 320
–329
.10.1016/j.jpowsour.2013.04.11423.
Sisworahardjo
, N.
, Yalcinoz
, T.
, El-Sharkh
, M.
, and Alam
, M.
, 2010
, “Neural Network Model of 100 W Portable PEM Fuel Cell and Experimental Verification
,” Int. J. Hydrogen Energy
, 35
(17
), pp. 9104
–9109
.10.1016/j.ijhydene.2010.05.12424.
Amirinejad
, M.
, Tavajohi-Hasankiadeh
, N.
, Madaeni
, S.
, Navarra
, M.
, Rafiee
, E.
, and Scrosati
, B.
, 2013
, “Adaptive Neuro-Fuzzy Inference System and Artificial Neural Network Modeling of Proton Exchange Membrane Fuel Cells Based on Nanocomposite and Recast Nafion Membranes
,” Int. J. Energy Res.
, 37
(4
), pp. 347
–357
.10.1002/er.192925.
Milewski
, J.
, and Świrski
, K.
, 2009
, “Hybrid–Artificial Neural Network as Solid Oxide Fuel Cell Model
,” Hydrogen + Fuel Cells 2009: International Conference and Trade Show, Vancouver, Canada, June 1–3.26.
Chaichana
, K.
, Patcharavorachot
, Y.
, Chutichai
, B.
, Saebea
, D.
, Assabumrungrat
, S.
, and Arpornwichanop
, A.
, 2012
, “Neural Network Hybrid Model of a Direct Internal Reforming Solid Oxide Fuel Cell
,” Int. J. Hydrogen Energy
, 37
(3
), pp. 2498
–2508
.10.1016/j.ijhydene.2011.10.05127.
Kishor
, N.
, and Mohanty
, S.
, 2010
, “Fuzzy Modeling of Fuel Cell Based on Mutual Information Between Variables
,” Int. J. Hydrogen Energy
, 35
(8
), pp. 3620
–3631
.10.1016/j.ijhydene.2010.01.04928.
Grondin
, D.
, Deseure
, J.
, Ozil
, P.
, Chabriat
, J.
, Grondin-Perez
, B.
, and Brisse
, A.
, 2013
, “Solid Oxide Electrolysis Cell 3D Simulation Using Artificial Neural Network for Cathodic Process Description
,” Chem. Eng. Res. Des.
, 91
(1
), pp. 134
–140
.10.1016/j.cherd.2012.06.00329.
Stempien
, J.
, Sun
, Q.
, Chan
, S.
, 2013
, “Performance of Power Generation Extension System Based on Solid-Oxide Electrolyzer Cells Under Various Design Conditions
,” Energy
, 55
, pp. 647
–657
.10.1016/j.energy.2013.03.03130.
Zamaniyan
, A.
, Joda
, F.
, Behroozsarand
, A.
, and Ebrahimi
, H.
, 2013
, “Application of Artificial Neural Networks (ANN) for Modeling of Industrial Hydrogen Plant
,” Int. J. Hydrogen Energy
, 38
(15
), pp. 6289
–6297
.10.1016/j.ijhydene.2013.02.13631.
Demuth
, H.
, Beale
, M.
, and Hagan
, M.
, 1992, “Neural Network Toolbox 6 User's Guide Matlab.32.
Jiang
, Y.
, and Virkar
, A. V.
, 2003
, “Fuel Composition and Diluent Effect on Gas Transport and Performance of Anode-Supported SOFCS
,” J. Electrochem. Soc.
, 150
(7
), pp. A942
–A951
.10.1149/1.157948033.
Virkar
, A.
, and Wilson
, L.
, 2003
, “Low-Temperature, Anode-Supported High Power Density Solid Oxide Fuel Cells With Nanostructured Electrodes
,” U.S. Department of Energy
, Technical Report. 10.2172/812922Copyright © 2014 by ASME
You do not currently have access to this content.