High temperature direct methanol fuel cells (DMFCs) using polybenzimidazole (PBI) membranes could improve the energy density of portable power sources. This study examines the polarization of vapor phase PBI DMFCs constructed with commercial membranes manufactured by a sol-gel method. The polarization of the high temperature DMFCs is compared to similar low temperature membrane electrode assemblies (MEAs) using Nafion® membranes. The results showed that the cathode of the PBI DMFC had higher kinetic losses that are likely due to phosphate poisoning of the Pt electrocatalyst. At the tested conditions, the membrane conductivity of the PBI MEAs was comparable to the Nafion® MEA even with no humidification. Higher cell temperatures significantly improved PBI DMFC performance for Pt electrocatalyst electrodes. In full cell tests, the PBI DMFC MEAs had higher performance than Nafion® MEAs with similar catalyst loadings. The Pt and PtRu catalysts were tested for methanol oxidation and oxygen reduction activity by a rotating disk electrode (RDE) under 0.5 M H2SO4 and 0.5 M H3PO4. The combination of the polarization and RDE results for the PBI and Nafion® DMFCs suggest that Pt is a more active electrocatalyst for methanol oxidation in PBI than in Nafion®.

References

1.
Cox
,
J.
,
2009
, “
Growing “Power Gap” Could Force Smartphone Tradeoffs
,” Network World, September 28, 2009, http://www.networkworld.com/news/2009/092809-smartphone-tradeoffs.html
2.
Deloitte
,
2011
, “
Squeezing the Electrons In: Batteries Don't Follow Moore's Law
,” Technology, Media & Telecommunications Predictions 2011, Deloitte Touche Tohmatsu, London, pp. 15–16, http://www.deloitte.com/assets/Dcom-UnitedStates/Local%20Assets/Documents/TMT_us_tmt/us_tmt_TMTPredictions_011811.pdf
3.
Schmidt
,
T. J.
, and
Baurmeister
,
J.
,
2008
, “
Properties of High-Temperature PEFC Celtec (R)-P 1000 MEAs in Start/Stop Operation Mode
,”
J. Power Sources
,
176
(
2
), pp.
428
434
.10.1016/j.jpowsour.2007.08.055
4.
Li
,
Q. F.
,
He
,
R. H.
,
Jensen
,
J. O.
, and
Bjerrum
,
N. J.
,
2003
, “
Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating Above 100 Celsius symbol C
,”
Chem. Mater.
,
15
(
26
), pp.
4896
4915
.10.1021/cm0310519
5.
Garcia
,
B. L.
, and
Weidner
,
J. W.
,
2007
, “
Direct Methanol Fuel Cells
,”
Modern Aspects of Electrochemistry
, Vol.
40
,
R. E.
White
, ed., Springer, New York, p.
352
.
6.
Hsueh
,
K. L.
,
Gonzalez
,
E. R.
,
Srinivasan
,
S.
, and
Chin
,
D. T.
,
1984
, “
Effects of Phosphoric Acid Concentration on Oxygen Reduction Kinetics at Platinum
,”
J. Electrochem. Soc.
,
131
(
4
), pp.
823
828
.10.1149/1.2115707
7.
Scharifker
,
B. R.
,
Zelenay
,
P.
, and
Bockris
,
J. O.
,
1987
, “
The Kinetics of Oxygen Reduction in Molten Phosphoric Acid at High Temperatures
,”
J. Electrochem. Soc.
,
134
(
11
), pp.
2714
2725
.10.1149/1.2100276
8.
Lobato
,
J.
,
Canizares
,
P.
,
Rodrigo
,
M. A.
,
Linares
,
J. J.
, and
Lopez-Vizcaino
,
R.
,
2008
, “
Performance of a Vapor-Fed Polybenzimidazole (PBI)-Based Direct Methanol Fuel Cell
,”
Energy Fuels
,
22
(
5
), pp.
3335
3345
.10.1021/ef8001839
9.
Gubler
,
L.
,
Kramer
,
D.
,
Belack
,
J.
,
Unsal
,
O.
,
Schmidt
,
T. J.
, and
Scherer
,
G. G.
,
2007
, “
Celtec-V—A Polybenzimidazole-Based Membrane for the Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
154
(
9
), pp.
B981
B987
.10.1149/1.2754078
10.
Xu
,
C.
, and
Faghri
,
A.
,
2010
, “
Mass Transport Analysis of a Passive Vapor-Feed Direct Methanol Fuel Cell
,”
J. Power Sources
,
195
(
20
), pp.
7011
7024
.10.1016/j.jpowsour.2010.05.003
11.
Wainright
,
J. S.
,
Wang
,
J. T.
,
Weng
,
D.
,
Savinell
,
R. F.
, and
Litt
,
M.
,
1995
, “
Acid Doped Polybenzimidazoles: A New Polymer Electrolyte
,”
J. Electrochem. Soc.
,
142
(
7
), pp.
L121
L123
.10.1149/1.2044337
12.
Wang
,
J. T.
,
Wainright
,
J. S.
,
Savinell
,
R. F.
, and
Litt
,
M.
,
1996
, “
A Direct Methanol Fuel Cell Using Acid-Doped Polybenzimidazole as Polymer Electrolyte
,”
J. Appl. Electrochem.
,
26
(
7
), pp.
751
756
.10.1007/BF00241516
13.
Mamlouk
,
M.
,
Scott
,
K.
, and
Hidayati
,
N.
,
2011
, “
High Temperature Direct Methanol Fuel Cell Based on Phosphoric Acid PBI Membrane
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
6
), p.
061009
.10.1115/1.4004557
14.
Benicewicz
,
B. C.
,
2009
, “
High Temperature PBI Membranes
,” http://srnl.doe.gov/hse_workshop/Benicewicz%20PBI%20Membranes.pdf
15.
Xiao
,
L. X.
,
Zhang
,
H. F.
,
Scanlon
,
E.
,
Ramanathan
,
L. S.
,
Choe
,
E. W.
,
Rogers
,
D.
,
Apple
,
T.
, and
Benicewicz
,
B. C.
,
2005
, “
High-Temperature Polybenzimidazole Fuel Cell Membranes Via a Sol-Gel Process
,”
Chem. Mater.
,
17
(
21
), pp.
5328
5333
.10.1021/cm050831+
16.
Lee
,
C. H.
,
Lee
,
C. W.
,
Kim
,
D. I.
,
Jung
,
D. H.
,
Kim
,
C. S.
, and
Shin
,
D. R.
,
2000
, “
Electrooxidation of Methanol on Pt-Ru Catalysts Supported by Basal Plane Graphite in Phosphoric Acid Solution
,”
J. Power Sources
,
86
(
1–2
), pp.
478
481
.10.1016/S0378-7753(99)00442-5
You do not currently have access to this content.