Abstract

The green energy production through water splitting under visible light irradiation has become an emerging challenge in the 21st century. Photocatalysis, being a cost-competitive and efficient technique, has grabbed much more attention for environmental applications, especially for hydrogen evolution. In this article, the hybrid Cu3V2O8-WO3 nanostructures were prepared through the hydrothermal method by using copper acetate, ammonium metavanadate, and Na2WO4 · 2H2O as precursors. The varying contents of Cu3V2O8 in WO3 were 0.2%, 0.5%, 1.0%, 2.0%, and 3.0%. The X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), UV-Vis, and photoluminescence (PL) emission spectroscopy were used to investigate the structural, morphological, surface area, and optical properties of prepared samples. The average crystalline size of the pure WO3 ranges from 10 to 15 nm and 70 to 195 nm for an optimal composite sample. The structural phase of the hybrid WO3-Cu3V2O8 nanoparticles was found to transfer from monoclinic to hexagonal by incorporating the Cu3V2O8 contents. The enhanced photocatalytic performance for hydrogen evolution was observed for 2% Cu3V2O8-WO3 composite sample. The key to this enhancement lies at the heterojunction interface, where charge separation occurs. In addition, the excellent photocatalytic activity was attributed to a higher surface area, efficient charge separation, and extended visible light absorption. This work provides an in-depth understanding of efficient separation of charge carriers and transfer processes and steer charge flow for efficient solar-to-chemical energy applications.

References

1.
Tahir
,
M. B.
,
Nabi
,
G.
,
Hassan
,
A.
,
Iqbal
,
T.
,
Kiran
,
H.
, and
Majid
,
A.
,
2018
, “
Morphology Tailored Synthesis of C-WO3 Nanostructures and Its Photocatalatic Application
,”
J. Inorg. Organomet. Polym. Mater.
,
28
(
3
), pp.
738
745
. 10.1007/s10904-017-0720-8
2.
Janitabar-Darzi
,
S.
, and
Mahjoub
,
A. R.
,
2009
, “
Investigation of Phase Transformations and Photocatalytic Properties of Sol–Gel Prepared Nanostructured ZnO/TiO2 Composites
,”
J. Alloys Compd.
,
486
(
1–2
), pp.
805
808
. 10.1016/j.jallcom.2009.07.071
3.
Nie
,
Y. C.
,
Yu
,
F.
,
Wang
,
L. C.
,
Xing
,
Q. J.
,
Liu
,
X.
, and
Pei
,
Y.
,
2018
, “
Photocatalytic Degradation of Organic Pollutants Coupled With Simultaneous Photocatalytic H2 Evolution Over Graphene Quantum Dots/Mn-N-TiO2/g-C3N4 Composite Catalysts: Performance and Mechanism
,”
Appl. Catal. B
,
227
(
6
), pp.
312
321
. 10.1016/j.apcatb.2018.01.033
4.
Fakhri
,
A.
, and
Behrouz
,
S.
,
2015
, “
Photocatalytic Properties of Tungsten Trioxide (WO3) Nanoparticles for Degradation of Lidocaine Under Visible and Sunlight Irradiation
,”
Sol. Eng.
,
112
(
2015
), pp.
163
168
. 10.1016/j.solener.2014.11.014
5.
Zhang
,
J.
,
Shuo
,
L.
,
Bing
,
K.
, and
Wang
,
J. D.
,
2014
, “
Highly Efficient CdS/WO3 Photocatalysts: Z-Scheme Photocatalytic Mechanism for Their Enhanced Photocatalytic H2 Evolution Under Visible Light
,”
ACS Catal.
4
(
10
), pp.
3724
3729
. 10.1021/cs500794j
6.
Cong
,
W.
, and
Lin
,
C.
,
2011
, “
Preparation, Spectral Characteristics and Photocatalytic Activity of Eu3+-Doped WO3 Nanoparticles
,”
J. Rare Earths
,
29
(
8
), pp.
727
731
. 10.1016/S1002-0721(10)60531-5
7.
Ma
,
B.
,
Guo
,
J.
,
Dai
,
W. L.
, and
Fan
,
K.
,
2012
, “
Ag-AgCl/WO3 Hollow Sphere With Flower-Like Structure and Superior Visible Photocatalytic Activity
,”
Appl. Catal. B
,
123
(
2012
), pp.
193
99
. 10.1016/j.apcatb.2012.04.029
8.
Choi
,
H. G.
,
Jung
,
Y. H.
, and
Kim
,
D. K.
,
2005
, “
Solvothermal Synthesis of Tungsten Oxide Nanorod/Nanowire/Nanosheet
,”
J. Am. Ceram. Soc.
,
88
(
6
), pp.
1684
1686
. 10.1111/j.1551-2916.2005.00341.x
9.
Zheng
,
J. Y.
,
Song
,
G.
,
Hong
,
J.
,
Van
,
T. K.
,
Pawar
,
A. U.
,
Kim
,
D. Y.
,
Kim
,
C. W.
,
Haider
,
Z.
, and
Kang
,
Y. S.
,
2014
, “
Facile Fabrication of WO3 Nanoplates Thin Films With Dominant Crystal Facet of (002) for Water Splitting
,”
Cryst. Growth Des.
,
14
(
11
), pp.
6057
6066
. 10.1021/cg5012154
10.
Aslam
,
M.
,
Ismail
,
I. M.
,
Chandrasekaran
,
S.
, and
Hameed
,
A.
,
2014
, “
Morphology Controlled Bulk Synthesis of Disc-Shaped WO3 Powder and Evaluation of Its Photocatalytic Activity for the Degradation of phenols
,”
J. Hazard. Mater.
,
276
(
2014
), pp.
120
128
. 10.1016/j.jhazmat.2014.05.022
11.
Bojinova
,
A. S.
,
Papazova
,
C. I.
,
Karadjova
,
I. B.
, and
Poulios
,
I.
,
2008
, “
Photocatalytic Degradation of Malachite Green Dyes With TiO2/WO3 Composite
,”
Eurasian J. Anal. Chem.
,
3
(
1
), pp.
34
43
.
12.
Li
,
S.
,
Zhao
,
Z.
,
Huang
,
Y.
,
Di,
J.
,
Yi
,
J.
, and
Zheng
,
H.
,
2015
, “
Hierarchically Structured WO3–CNT@TiO2 NS Composites With Enhanced Photocatalytic Activity
,”
J. Mater. Chem. A
,
3
(
10
), pp.
5467
5473
. 10.1039/C4TA06883A
13.
Meng
,
J.
,
Pei
,
J.
,
He
,
Z.
,
Wu
,
S.
,
Lin
,
Q.
,
Wei
,
X.
,
Lia
,
J.
, and
Zhanga
,
Z.
,
2017
, “
Facile Synthesis of g-C3N4 Nanosheets Loaded With WO3 Nanoparticles With Enhanced Photocatalytic Performance Under Visible Light irradiation
,”
RSC Adv.
,
7
(
39
), pp.
24097
24104
. 10.1039/C7RA02297B
14.
Gan
,
L.
,
Xu
,
L.
,
Shang
,
S.
,
Zhou
,
X.
, and
Meng
,
L.
,
2016
, “
Visible Light Induced Methylene Blue Dye Degradation Photo-Catalyzed by WO3/Graphene Nanocomposites and the Mechanism
,”
Ceram. Int.
,
42
(
14
), pp.
15235
15241
. 10.1016/j.ceramint.2016.06.160
15.
Aslam
,
I.
,
Cao
,
C.
,
Tanveer
,
M.
,
Khan
,
W. S.
,
Tahir
,
M.
,
Abid
,
M.
,
Idrees
,
F.
,
Butt
,
F. K.
,
Alia
,
Z.
, and
Mahmood
,
N.
,
2014
, “
The Synergistic Effect Between WO3 and gC3N4 Towards Efficient Visible-Light-Driven Photocatalytic performance
,”
New J. Chem.
,
38
(
11
), pp.
5462
5469
. 10.1039/C4NJ01370K
16.
Arani
,
M. G.
,
Arani
,
M. M.
,
Ghanbari
,
D.
,
Bagheri
,
S.
, and
Niasari
,
M. S.
,
2016
, “
Novel Chemical Synthesis and Characterization of Copper Pyrovanadate Nanoparticles and Its Influence on the Flame Retardancy of Polymeric Nanocomposites
,”
Sci. Rep.
6
(
1
), pp.
25231
25240
. 10.1038/srep25231
17.
Miyauchi
,
M.
,
2008
, “
Photocatalysis and Photoinduced Hydrophilicity of WO3 Thin Films With Underlying Pt nanoparticles
,”
Phys. Chem. Chem. Phys.
,
10
(
41
), pp.
6258
6265
. 10.1039/b807426g
18.
Wu
,
J.
,
Li
,
Y. B.
,
Kubota
,
J.
,
Domen
,
K.
,
Aagesen
,
M.
,
Ward
,
T.
,
Sanchez
,
A.
,
Beanland
,
R.
,
Zhang
,
Y.
,
Tang
,
M. C.
, and
Hatch
,
S.
,
2014
, “
Wafer-Scale Fabrication of Self-Catalyzed 1.7 eV GaAsP Core–Shell Nanowire Photocathode on Silicon Substrates
,”
Nano Lett.
14
(
4
), pp.
2013
2018
. 10.1021/nl500170m
19.
Lewerenz
,
H. J.
, and
Laurence
,
P.
,
2013
,
Photoelectrochemical Water Splitting: Materials, Processes and Architectures
,
RSC Publishing
,
Cambridge, Great Britain
.
20.
Guo
,
W.
,
Chemelewski
,
W. D.
,
Mabayoje
,
O.
,
Xiao
,
P.
,
Zhang
,
Y.
, and
Mullins
,
C. B.
,
2015
, “
Synthesis and Characterization of CuV2O6 and Cu2V2O7: Two Photoanode Candidates for Photoelectrochemical Water Oxidation
,”
J. Phys. Chem. C
,
119
(
49
), pp.
27220
27227
. 10.1021/acs.jpcc.5b07219
21.
Seabold
,
J. A.
, and
Neale
,
N. R.
,
2015
, “
All First Row Transition Metal Oxide Photoanode for Water Splitting Based on Cu3V2O8
,”
Chem. Mater.
27
(
3
), pp.
1005
1013
. 10.1021/cm504327f
22.
Choi
,
J.
,
2014
, “
Multi-Layer Electrode With Nano-Li4Ti5O12 Aggregates Sandwiched Between Carbon Nanotube and Grapheme Networks for High Power Li-ion Batteries
,”
Sci. Rep.
,
4
, p.
7334
. 10.1038/srep07334
23.
Sun
,
X.
,
2010
, “
‘Hydrothermal Synthesis of Cu3V2O7(OH)2 · 2H2O Hierarchical Microspheres and Their Electrochemical properties
,”
Mater. Lett.
64
(
1
), pp.
2019
2021
. 10.1016/j.matlet.2010.05.055
24.
Li
,
M.
,
Gao
,
Y.
,
Chen
,
N.
,
Meng
,
X.
,
Wang
,
C.
,
Zhang
,
Y.
,
Zhang
,
D.
,
Wei
,
Y.
,
Du
,
F.
, and
Chen
,
G.
,
2016
, “
Cu3V2O8 Nanoparticles as Intercalation-Type Anode Material for Lithium-Ion Batteries
,”
Chem. Eur. J.
22
(
1
), pp.
1
9
. 10.1002/chem.201504553
25.
Farhadian
,
M.
,
Sangpour
,
P.
, and
Hosseinzadeh
,
G.
,
2016
, “
Preparation and Photocatalytic Activity of WO3–MWCNT Nanocomposite for Degradation of Naphthalene Under Visible Light irradiation
,”
RSC Adv.
,
6
(
45
), pp.
39063
39073
. 10.1039/C6RA04642H
26.
Khan
,
M. E.
,
Khan
,
M. M.
, and
Cho
,
M. H.
,
2016
, “
Fabrication of WO3 Nanorods on Graphene Nanosheets for Improved Visible Light-Induced Photocapacitive and Photocatalytic performance
,”
RSC Adv.
,
6
(
25
), pp.
20824
20833
. 10.1039/C5RA24575C
27.
Zhou
,
M.
,
Yan
,
J.
, and
Cui
,
P.
,
2012
, “
‘Synthesis and Enhanced Photocatalytic Performance of WO3 Nanorods@ Graphene Nanocomposites
,”
Mater. Lett.
89
(
3
), pp.
258
261
. 10.1016/j.matlet.2012.08.081
28.
Tahir
,
M. B.
,
Sagir
,
M.
,
Zubair
,
M.
,
Rafique
,
M.
,
Abbas
,
I.
,
Shakil
,
M.
,
Khan
,
I.
,
Afsheen
,
S.
,
Hasan
,
A.
, and
Ahmed
,
A.
,
2018
, “
WO3 Nanostructures-Based Photocatalyst Approach Towards Degradation of RhB Dye
,”
J. Inorg. Organomet. Polymer. Mater.
28
(
1
), pp.
1107
1113
. 10.1007/s10904-017-0771-x
You do not currently have access to this content.