Abstract

The effects of nonuniform temperature distribution on the degradation of lithium-ion (Li-ion) batteries are investigated in this study. A Li-ion battery stack consisting of five 3 Ah pouch cells connected in parallel was tested for 2215 cycles and compared with a single baseline cell. The behaviors of temperature distribution, degradation, and current distribution of the stack were characterized and discussed. Results supported the hypothesis that nonuniform temperature distribution causes nonuniform and accelerated degradation. All cells in the stack experienced higher temperature rise and degraded faster than the baseline cell. In particular, capacity retention of the middle cell in the stack decreased to 50.7% after 2215 cycles, while the baseline cell capacity retention was still 87.8%. The resistance of cells in the stack experienced nonuniform but similar pattern of variation with cycling. The resistances remained stable in early cycles, then experienced a rapid increase, and then became stable again. The middle cell resistance increased abruptly in the last 20 cycles before failure. Current distribution behaviors of the stack also changed significantly during cycling, which was consistent with cell resistance behaviors. The middle cell experienced much higher C rate than average, suggesting that its accelerated degradation can be attributed to the synergized effects of higher local temperature and higher local current.

References

1.
Thomas
,
E. V.
,
Bloom
,
I.
,
Christophersen
,
J. P.
, and
Battaglia
,
V. S.
,
2012
, “
Rate-Based Degradation Modeling of Lithium-Ion Cells
,”
J. Power Sources
,
206
, pp.
378
382
. 10.1016/j.jpowsour.2012.01.106
2.
Smith
,
K.
,
Shi
,
Y.
, and
Santhanagopalan
,
S.
, “
Degradation Mechanisms and Lifetime Prediction for Lithium-Ion Batteries—A Control Perspective
,”
Proceedings of 2015 American Control Conference (ACC)
,
Chicago, IL
,
July 1–3
, pp.
728
730
. http://dx.doi.org/10.1109/ACC.2015.7170820
3.
Birkl
,
C. R.
,
Roberts
,
M. R.
,
McTurk
,
E.
,
Bruce
,
P. G.
, and
Howey
,
D. A.
,
2017
, “
Degradation Diagnostics for Lithium Ion Cells
,”
J. Power Sources
,
341
, pp.
373
386
. 10.1016/j.jpowsour.2016.12.011
4.
Kabir
,
M. M.
, and
Demirocak
,
D. E.
,
2017
, “
Degradation Mechanisms in Li-Ion Batteries: A State-of-the-Art Review
,”
Int. J. Energy Res.
,
41
(
14
), pp.
1963
1986
. 10.1002/er.3762
5.
Burow
,
D.
,
Sergeeva
,
K.
,
Calles
,
S.
,
Schorb
,
K.
,
Börger
,
A.
,
Roth
,
C.
, and
Heitjans
,
P.
,
2016
, “
Inhomogeneous Degradation of Graphite Anodes in Automotive Lithium Ion Batteries Under Low-Temperature Pulse Cycling Conditions
,”
J. Power Sources
,
307
, pp.
806
814
. 10.1016/j.jpowsour.2016.01.033
6.
Rashid
,
M.
, and
Gupta
,
A.
,
2017
, “
Experimental Assessment and Model Development of Cycling Behavior in Li-Ion Coin Cells
,”
Electrochim. Acta
,
231
, pp.
171
184
. 10.1016/j.electacta.2017.02.040
7.
Rashid
,
M.
, and
Gupta
,
A.
,
2014
, “
Mathematical Model for Combined Effect of SEI Formation and Gas Evolution in Li-Ion Batteries
,”
ECS Electrochem. Lett.
,
3
(
10
), pp.
A95
A98
. 10.1149/2.0041410eel
8.
Belt
,
J. R.
,
Ho
,
C. D.
,
Motloch
,
C. G.
,
Miller
,
T. J.
, and
Duong
,
T. Q.
,
2003
, “
A Capacity and Power Fade Study of Li-Ion Cells During Life Cycle Testing
,”
J. Power Sources
,
123
(
2
), pp.
241
246
. 10.1016/S0378-7753(03)00537-8
9.
Börner
,
M.
,
Friesen
,
A.
,
Grützke
,
M.
,
Stenzel
,
Y. P.
,
Brunklaus
,
G.
,
Haetge
,
J.
,
Nowak
,
S.
,
Schappacher
,
F. M.
, and
Winter
,
M.
,
2017
, “
Correlation of Aging and Thermal Stability of Commercial 18650-Type Lithium Ion Batteries
,”
J. Power Sources
,
342
, pp.
382
392
. 10.1016/j.jpowsour.2016.12.041
10.
Palacin
,
M. R.
, and
de Guibert
,
A.
,
2016
, “
Why Do Batteries Fail?
,”
Science
,
351
(
6273
), p.
1253292
. 10.1126/science.1253292
11.
Waldmann
,
T.
,
Wilka
,
M.
,
Kasper
,
M.
,
Fleischhammer
,
M.
, and
Wohlfahrt-Mehrens
,
M.
,
2014
, “
Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries—A Post-Mortem Study
,”
J. Power Sources
,
262
, pp.
129
135
. 10.1016/j.jpowsour.2014.03.112
12.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
3
), pp.
R1
R25
. 10.1149/1.3515880
13.
Matsuda
,
T.
,
Ando
,
K.
,
Myojin
,
M.
,
Matsumoto
,
M.
,
Sanada
,
T.
,
Takao
,
N.
,
Imai
,
H.
, and
Imamura
,
D.
,
2019
, “
Investigation of the Influence of Temperature on the Degradation Mechanism of Commercial Nickel Manganese Cobalt Oxide-Type Lithium-Ion Cells During Long-Term Cycle Tests
,”
J. Energy Storage
,
21
, pp.
665
671
. 10.1016/j.est.2019.01.009
14.
Fan
,
L.
,
Khodadadi
,
J. M.
, and
Pesaran
,
A. A.
,
2013
, “
A Parametric Study on Thermal Management of an Air-Cooled Lithium-Ion Battery Module for Plug-In Hybrid Electric Vehicles
,”
J. Power Sources
,
238
, pp.
301
312
. 10.1016/j.jpowsour.2013.03.050
15.
Wang
,
T.
,
Tseng
,
K. J.
,
Zhao
,
J.
, and
Wei
,
Z.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl. Energy
,
134
, pp.
229
238
. 10.1016/j.apenergy.2014.08.013
16.
Robinson
,
J. B.
,
Darr
,
J. A.
,
Eastwood
,
D. S.
,
Hinds
,
G.
,
Lee
,
P. D.
,
Shearing
,
P. R.
,
Taiwo
,
O. O.
, and
Brett
,
D. J. L.
,
2014
, “
Non-Uniform Temperature Distribution in Li-Ion Batteries During Discharge—A Combined Thermal Imaging, X-ray Micro-Tomography and Electrochemical Impedance Approach
,”
J. Power Sources
,
252
, pp.
51
57
. 10.1016/j.jpowsour.2013.11.059
17.
Wu
,
B.
,
Li
,
Z.
, and
Zhang
,
J.
,
2015
, “
Thermal Design for the Pouch-Type Large-Format Lithium-Ion Batteries: I. Thermo-Electrical Modeling and Origins of Temperature Non-Uniformity
,”
J. Electrochem. Soc.
,
162
(
1
), pp.
A181
A191
. 10.1149/2.0831501jes
18.
Fleckenstein
,
M.
,
Bohlen
,
O.
,
Roscher
,
M. A.
, and
Bäker
,
B.
,
2011
, “
Current Density and State of Charge Inhomogeneities in Li-Ion Battery Cells With LiFePO4 as Cathode Material Due to Temperature Gradients
,”
J. Power Sources
,
196
(
10
), pp.
4769
4778
. 10.1016/j.jpowsour.2011.01.043
19.
Li
,
Z.
,
Zhang
,
J.
,
Wu
,
B.
,
Huang
,
J.
,
Nie
,
Z.
,
Sun
,
Y.
,
An
,
F.
, and
Wu
,
N.
,
2013
, “
Examining Temporal and Spatial Variations of Internal Temperature in Large-Format Laminated Battery With Embedded Thermocouples
,”
J. Power Sources
,
241
, pp.
536
553
. 10.1016/j.jpowsour.2013.04.117
20.
Zhang
,
G.
,
Cao
,
L.
,
Ge
,
S.
,
Wang
,
C.-Y.
,
Shaffer
,
C. E.
, and
Rahn
,
C. D.
,
2014
, “
In Situ Measurement of Radial Temperature Distributions in Cylindrical Li-Ion Cells
,”
J. Electrochem. Soc.
,
161
(
10
), pp.
1499
1507
. 10.1149/2.0051410jes
21.
Troxler
,
Y.
,
Wu
,
B.
,
Marinescu
,
M.
,
Yufit
,
V.
,
Patel
,
Y.
,
Marquis
,
A. J.
,
Brandon
,
N. P.
, and
Offer
,
G. J.
,
2014
, “
The Effect of Thermal Gradients on the Performance of Lithium-Ion Batteries
,”
J. Power Sources
,
247
, pp.
1018
1025
. 10.1016/j.jpowsour.2013.06.084
22.
Klein
,
M. P.
, and
Park
,
J. W.
,
2017
, “
Current Distribution Measurements in Parallel-Connected Lithium-Ion Cylindrical Cells Under Non-Uniform Temperature Conditions
,”
J. Electrochem. Soc.
,
164
(
9
), pp.
A1893
A1906
. 10.1149/2.0011709jes
23.
Kamalisiahroudi
,
S.
,
Huang
,
J.
,
Li
,
Z.
, and
Zhang
,
J.
,
2014
, “
Study of Temperature Difference and Current Distribution in Parallel-Connected Cells at Low Temperature
,”
Int. J. Mech. Mechatron. Eng.
,
8
(
10
), pp.
1595
1599
.
24.
Teufl
,
T.
,
Pritzl
,
D.
,
Solchenbach
,
S.
,
Gasteiger
,
H. A.
, and
Mendez
,
M. A.
,
2019
, “
Editors’ Choice—State of Charge Dependent Resistance Build-Up in Li- and Mn-Rich Layered Oxides During Lithium Extraction and Insertion
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A1275
A1284
. 10.1149/2.1131906jes
25.
Schweiger
,
H. G.
,
Obeidi
,
O.
,
Komesker
,
O.
,
Raschke
,
A.
,
Schiemann
,
M.
,
Zehner
,
C.
,
Gehnen
,
M.
,
Keller
,
M.
, and
Birke
,
P.
,
2010
, “
Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells
,”
Sensors
,
10
(
6
), pp.
5604
5625
. 10.3390/s100605604
26.
Zhang
,
G.
,
Ge
,
S.
,
Yang
,
X.-G.
,
Leng
,
Y.
,
Marple
,
D.
, and
Wang
,
C.-Y.
,
2017
, “
Rapid Restoration of Electric Vehicle Battery Performance While Driving at Cold Temperatures
,”
J. Power Sources
,
371
, pp.
35
40
. 10.1016/j.jpowsour.2017.10.029
27.
Zhang
,
G.
,
Shaffer
,
C. E.
,
Wang
,
C.-Y.
, and
Rahn
,
C. D.
,
2013
, “
In-Situ Measurement of Current Distribution in a Li-Ion Cell
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A610
A615
. 10.1149/2.046304jes
28.
Zhang
,
G.
,
Shaffer
,
C. E.
,
Wang
,
C. Y.
, and
Rahn
,
C. D.
,
2013
, “
Effects of Non-Uniform Current Distribution on Energy Density of Li-Ion Cells
,”
J. Electrochem. Soc.
,
160
(
11
), pp.
A2299
A2305
. 10.1149/2.061311jes
29.
Erhard
,
S. V.
,
Osswald
,
P. J.
,
Keil
,
P.
,
Höffer
,
E.
,
Haug
,
M.
,
Noel
,
A.
,
Wilhelm
,
J.
,
Rieger
,
B.
,
Schmidt
,
K.
,
Kosch
,
S.
,
Kindermann
,
F. M.
,
Spingler
,
F.
,
Kloust
,
H.
,
Thoennessen
,
T.
,
Rheinfeld
,
A.
, and
Jossen
,
A.
,
2017
, “
Simulation and Measurement of the Current Density Distribution in Lithium-Ion Batteries by a Multi-Tab Cell Approach
,”
J. Electrochem. Soc.
,
164
(
1
), pp.
A6324
A6333
. 10.1149/2.0551701jes
30.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2003
, “
The Low Temperature Performance of Li-Ion Batteries
,”
J. Power Sources
,
115
(
1
), pp.
137
140
. 10.1016/S0378-7753(02)00618-3
31.
Huang
,
S.
,
Wu
,
X.
,
Cavalheiro
,
G. M.
,
Du
,
X.
,
Liu
,
B.
,
Du
,
Z.
, and
Zhang
,
G.
,
2019
, “
In Situ Measurement of Lithium-Ion Cell Internal Temperatures During Extreme Fast Charging
,”
J. Electrochem. Soc.
,
166
(
14
), pp.
A3254
A3259
. 10.1149/2.0441914jes
32.
Klett
,
M.
,
Eriksson
,
R.
,
Groot
,
J.
,
Svens
,
P.
,
Ciosek Högström
,
K.
,
Lindström
,
R. W.
,
Berg
,
H.
,
Gustafson
,
T.
,
Lindbergh
,
G.
, and
Edström
,
K.
,
2014
, “
Non-uniform Aging of Cycled Commercial LiFePO4//Graphite Cylindrical Cells Revealed by Post-Mortem Analysis
,”
J. Power Sources
,
257
, pp.
126
137
. 10.1016/j.jpowsour.2014.01.105
33.
Yang
,
X.-G.
,
Leng
,
Y.
,
Zhang
,
G.
,
Ge
,
S.
, and
Wang
,
C.-Y.
,
2017
, “
Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition From Linear to Nonlinear Aging
,”
J. Power Sources
,
360
, pp.
28
40
. 10.1016/j.jpowsour.2017.05.110
34.
Yang
,
X.-G.
, and
Wang
,
C.-Y.
,
2018
, “
Understanding the Trilemma of Fast Charging, Energy Density and Cycle Life of Lithium-Ion Batteries
,”
J. Power Sources
,
402
, pp.
489
498
. 10.1016/j.jpowsour.2018.09.069
35.
Yang
,
X.-G.
,
Ge
,
S.
,
Liu
,
T.
,
Leng
,
Y.
, and
Wang
,
C.-Y.
,
2018
, “
A Look Into the Voltage Plateau Signal for Detection and Quantification of Lithium Plating in Lithium-Ion Cells
,”
J. Power Sources
,
395
, pp.
251
261
. 10.1016/j.jpowsour.2018.05.073
36.
Yang
,
X.-G.
,
Zhang
,
G.
,
Ge
,
S.
, and
Wang
,
C.-Y.
,
2018
, “
Fast Charging of Lithium-Ion Batteries at All Temperatures
,”
Proc. Natl. Acad. Sci. USA.
,
115
(
28
), pp.
7266
7271
. 10.1073/pnas.1807115115
You do not currently have access to this content.