Abstract

In this study, two solid oxide fuel cell (SOFC) hybrid systems (anode-supported model (ASM) and electrolyte-supported model (ESM)) is developed in matlab® and compared. The hybrid system model is considered to investigate the impacts of various operating parameters such as SOFC operating temperature and steam/carbon ratio on power production and performance of the hybrid system where it is projected that results can be utilized as guidelines for optimal hybrid system operation. According to the findings, a maximum 695 kW power is produced at 750 °C operating temperature for the anode-supported model, whereas 627 kW power is produced at 1000 °C for the electrolyte-supported model. The highest electrical efficiencies for the anode-supported model and the electrolyte-supported model are 64.6% and 58.3%, respectively. Besides, the lower value of the steam to carbon ratio is favorable for increased power output from the fuel cell and consequently a high SOFC efficiency.

References

References
1.
Singhal
,
S. C.
, and
Kendall
,
K.
,
2003
,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
,
Oxford, UK
.
2.
Larminie
,
J.
, and
Dicks
,
A.
,
2000
,
Fuel Cell Systems Explained
,
John Wiley & Sons
,
Chichester, England
.
3.
Massardo
,
A. F.
, and
Lubelli
,
F.
,
2000
, “
Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT). Part A: Cell Model and Cycle Thermodynamic Analysis
,”
Trans. ASME: J. Eng. Gas Turbine Power
,
122
(
1
), pp.
27
35
. 10.1115/1.483187
4.
Ranjbar
,
F.
,
Chitsaz
,
A.
,
Mahmoudi
,
S. M. S.
,
Khalilarya
,
S.
, and
Rosen
,
M. A.
,
2014
, “
Energy and Exergy Assessments of a Novel Trigeneration System Based on a Solid Oxide Fuel Cell
,”
Energy Convers. Manage.
,
87
, pp.
318
327
. 10.1016/j.enconman.2014.07.014
5.
Chitsaz
,
A.
,
Mahmoudi
,
S. M.
, and
Rosen
,
M. A.
,
2015
, “
Greenhouse Gas Emission and Exergy Analyses of an Integrated Trigeneration System Driven by a Solid Oxide Fuel Cell
,”
Appl. Therm. Eng.
,
86
, pp.
81
89
. 10.1016/j.applthermaleng.2015.04.040
6.
Uechi
,
H.
,
Kimijima
,
S.
, and
Kasagi
,
N.
,
2004
, “
Cycle Analysis of Gas Turbine–Fuel Cell Cycle Hybrid Micro Generation System
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
755
762
. 10.1115/1.1787505
7.
Haseli
,
Y.
,
Dincer
,
I.
, and
Naterer
,
G.
,
2008
, “
Thermodynamic Modeling of a Gas Turbine Cycle Combined With a Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
33
(
20
), pp.
5811
5822
. 10.1016/j.ijhydene.2008.05.036
8.
Yi
,
Y.
,
Rao
,
A. D.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
,
2004
, “
Analysis and Optimization of a Solid Oxide Fuel Cell and Intercooled Gas Turbine (SOFC-ICGT) Hybrid Cycle
,”
J. Power Sources
,
132
(
1–2
), pp.
77
85
. 10.1016/j.jpowsour.2003.08.035
9.
Adams
,
T. A.
, and
Barton
,
P. I.
,
2010
, “
High-Efficiency Power Production From Natural Gas With Carbon Capture
,”
J. Power Sources
,
195
(
7
), pp.
1971
1983
. 10.1016/j.jpowsour.2009.10.046
10.
Palsson
,
J.
,
Selimovic
,
A.
, and
Sjunnesson
,
L.
,
2000
, “
Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation
,”
J. Power Sources
,
86
(
1–2
), pp.
442
448
. 10.1016/S0378-7753(99)00464-4
11.
Granovskii
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2007
, “
Performance Comparison of Two Combined SOFC–Gas Turbine Systems
,”
J. Power Sources
,
165
(
1
), pp.
307
314
. 10.1016/j.jpowsour.2006.11.069
12.
Calise
,
F.
,
d’Accadia
,
M. D.
,
Palombo
,
A.
, and
Vanoli
,
L.
,
2006
, “
Simulation and Exergy Analysis of a Hybrid Solid Oxide Fuel Cell (SOFC)—Gas Turbine System
,”
Energy
,
31
(
15
), pp.
3278
3299
. 10.1016/j.energy.2006.03.006
13.
Shaikh
,
S.
,
Muchtar
,
A.
, and
Somalu
,
M.
,
2015
, “
A Review on the Selection of Anode Materials for Solid-Oxide Fuel Cells
,”
Renew. Sustain. Energy Rev.
,
51
, pp.
1
8
. 10.1016/j.rser.2015.05.069
14.
Taroco
,
H.
,
Santos
,
J.
,
Domingues
,
R.
, and
Matencio
,
T.
,
2011
,
Ceramic Materials for Solid Oxide Fuel Cells
,
Open Access Publisher
.
15.
Stolten
,
D.
, and
Emonts
,
B.
,
2012
,
Fuel Cell Science and Engineering: Materials, Processes, Systems and Technology
,
John Wiley & Sons
,
New York
.
16.
Cottrell
,
C. A.
,
Grasman
,
S. E.
,
Thomas
,
M.
,
Martin
,
K. B.
, and
Sheffield
,
J. W.
,
2011
, “
Strategies for Stationary and Portable Fuel Cell Markets
,”
Int. J. Hydrogen Energy
,
36
(
13
), pp.
7969
7975
. 10.1016/j.ijhydene.2011.01.056
17.
Song
,
T. W.
,
Sohn
,
L. S.
,
Kim
,
T. S.
, and
Ro
,
S. T.
,
2006
, “
Performance Characteristics of a MW-Class SOFC/GT Hybrid System Based on a Commercially Available Gas Turbine
,”
J. Power Sources
,
158
(
1
), pp.
361
367
. 10.1016/j.jpowsour.2005.09.031
18.
Patcharavorachot
,
Y.
,
Arpornwichanop
,
A.
, and
Chuachuensuk
,
A.
,
2008
, “
Electrochemical Study of a Planar Solid Oxide Fuel Cell: Role of Support Structures
,”
J. Power Sources
,
177
(
2
), pp.
254
261
. 10.1016/j.jpowsour.2007.11.079
19.
Shy
,
S. S.
,
Hsieh
,
S. C.
, and
Chang
,
H. Y.
,
2018
, “
A Pressurized Ammonia-Fueled Anode-Supported Solid Oxide Fuel Cell: Power Performance and Electrochemical Impedance Measurements
,”
J. Power Sources
,
396
, pp.
80
87
. 10.1016/j.jpowsour.2018.06.006
20.
Nguyen
,
X. V.
,
Chang
,
C. T.
,
Jung
,
G. B.
,
Chan
,
S. H.
,
Yeh
,
C. C.
,
Yu
,
J.-W.
, and
Lee
,
C.-Y.
,
2018
, “
Improvement on the Design and Fabrication of Planar SOFCs With Anode-Supported Cells Based on Modified Button Cells
,”
Renew. Energy
,
129
(
Part B
), pp.
806
813
. 10.1016/j.renene.2017.03.070
21.
Lim
,
T. H.
,
Song
,
R. H.
,
Shin
,
D. R.
,
Yang
,
G. L.
,
Yang
,
S. S.
,
Jung
,
H.
,
Vinke
,
I. C.
, and
Yang
,
S. S.
,
2008
, “
Operating Characteristics of a 5 kW Class Anode-Supported Planar SOFC Stack for a Fuel Cell/Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
,
33
(
3
), pp.
1076
1083
. 10.1016/j.ijhydene.2007.11.017
22.
Wu
,
P. C.
, and
Shy
,
S. S.
,
2017
, “
Cell Performance, Impedance, and Various Resistances Measurements of an Anode-Supported Button Cell Using a New Pressurized Solid Oxide Fuel Cell Rig at 1–5 atm and 750–850 °C
,”
J. Power Sources
,
362
, pp.
105
114
. 10.1016/j.jpowsour.2017.07.030
23.
Hsieh
,
Y. D.
,
Chan
,
Y. H.
, and
Shy
,
S. S.
,
2015
, “
Effects of Pressurization and Temperature on Power Generating Characteristics and Impedances of Anode-Supported and Electrolyte-Supported Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
299
, pp.
1
10
. 10.1016/j.jpowsour.2015.08.080
24.
Bavarsad
,
P. G.
,
2007
, “
Energy and Exergy Analysis of Internal Reforming Solid Oxide Fuel Cell–Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
,
32
(
17
), pp.
4591
4599
. 10.1016/j.ijhydene.2007.08.004
25.
Zabihian
,
F.
, and
Fung
,
A. S.
,
2014
, “
Thermodynamic Sensitivity Analysis of Hybrid System Based on Solid Oxide Fuel Cell
,”
Sustain. Energy Technol. Assess.
,
6
, pp.
51
59
. 10.1016/j.seta.2013.12.004
26.
Saisirirat
,
P.
,
2015
, “
The Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Hybrid System Numerical Model
,”
Energy Procedia
,
79
, pp.
845
850
. 10.1016/j.egypro.2015.11.576
27.
Lv
,
X.
,
Liu
,
X.
,
Gu
,
C.
, and
Weng
,
Y.
,
2016
, “
Determination of Safe Operation Zone for an Intermediate-Temperature Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
Energy
,
99
, pp.
91
102
. 10.1016/j.energy.2016.01.047
28.
Musa
,
A.
, and
De Paepe
,
M.
,
2008
, “
Performance of Combined Internally Reformed Intermediate High Temperature SOFC Cycle Compared to Internally Reformed Two-Staged Intermediate Temperature SOFC Cycle
,”
J. Hydrogen Energy
,
33
(
17
), pp.
4665
4672
. 10.1016/j.ijhydene.2008.05.093
29.
Steilen
,
M.
,
Saletti
,
C.
,
Heddrich
,
M. P.
, and
Friedrich
,
K. A.
,
2018
, “
Analysis of the Influence of Heat Transfer on the Stationary Operation and Performance of a Solid Oxide Fuel Cell/Gas Turbine Hybrid Power Plant
,”
Appl. Energy
,
211
, pp.
479
491
. 10.1016/j.apenergy.2017.11.038
30.
Isfahani
,
S. N. R.
, and
Sedaghat
,
A.
,
2016
, “
A Hybrid Micro Gas Turbine and Solid State Fuel Cell Power Plant With Hydrogen Production and CO2 Capture
,”
Int. J. Hydrogen Energy
,
41
(
22
), pp.
9490
9499
. 10.1016/j.ijhydene.2016.04.065
31.
Ozcan
,
H.
, and
Dincer
,
I.
,
2013
, “
Thermodynamic Analysis of an Integrated Sofc, Solar Orc and Absorption Chiller for Tri-Generation Applications
,”
Fuel Cells
,
13
(
5
), pp.
781
793
. 10.1002/fuce.201300012
32.
Ozcan
,
H.
, and
Dincer
,
I.
,
2015
, “
Performance Evaluation of an SOFC Based Trigeneration System Using Various Gaseous Fuels From Biomass Gasification
,”
Int. J. Hydrogen Energy
,
40
(
24
), pp.
7798
7807
. 10.1016/j.ijhydene.2014.11.109
33.
Colpan
,
O.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2007
, “
Thermodynamic Modeling of Direct Internal Reforming Solid Oxide Fuel Cells Operating With Syngas
,”
Int. J. Hydrogen Energy
,
32
(
7
), pp.
787
795
. 10.1016/j.ijhydene.2006.10.059
34.
Mehr
,
A. S.
,
Mahmoudi
,
S. M. S.
,
Yari
,
M.
, and
Chitsaz
,
A.
,
2015
, “
Thermodynamic and Exergoeconomic Analysis of Biogas Fed Solid Oxide Fuel Cell Power Plants Emphasizing on Anode and Cathode Recycling
,”
Energy Convers. Manage.
,
105
, pp.
596
606
. 10.1016/j.enconman.2015.07.085
35.
Jamalabadi
,
A.
,
Hooshmand
,
B.
, and
Broumand
,
B.
,
2014
, “
Economic and Environmental Modeling of a MGT-SOFC Hybrid Combined Heat and Power System for Ship Applications
,”
Middle-East J. Sci. Res.
,
22
(
4
), pp.
561
574
.
36.
Mahmoudi
,
S. M. S.
, and
Khani
,
L.
,
2016
, “
Thermodynamic and Exergoeconomic Assessments of a New Solid Oxide Fuel Cell-Gas Turbine Cogeneration System
,”
Energy Convers. Manage.
,
123
, pp.
324
337
. 10.1016/j.enconman.2016.06.017
37.
Tao
,
G.
,
Armstrong
,
T.
, and
Virkar
,
A.
,
2005
, “
Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) Research and Development Activities at MSRI
,”
Nineteenth Annual ACERC and ICES Conference
,
Provo, UT
,
Feb. 17–18
.
You do not currently have access to this content.