Abstract

High-energy density lithium ion batteries (LIBs) rely heavily on innovations of electrode materials. Herein, the porous TiNb2O7/carbon nanofibers (TNO/CNFs) have been prepared through the hydrothermal method and electrostatic spinning method as the anode for the Li-ion battery. The structure of porous TNO/CNFs after annealing at 700 °C for 2 h is intact, and lots of holes are found on that surface of nanofibers. Porous TNO/CNFs as the anode show better electrochemical performance than TNO/CNFs, the capacity retention of porous TNO/CNFs is 81.6% (147 mA h/g) with an exceptionally high rate (at 20 C rate). And the capacity retention of porous TNO/CNFs is higher than ≈77% that of TNO/CNFs (112 mA h/g). The superior electrochemical performance of these porous TNO/CNFs can be attributed to the unique porous carbon nanofiber structure: this structure of porous nanofibers not only provides a larger effective area for contact with the electrolyte but also reduces the rate-limiting Li diffusion path, leading to faster charge transfer.

References

References
1.
Chen
,
M.
,
Zhang
,
J.
,
Chen
,
Q.
,
Qi
,
M.
, and
Xia
,
X.
,
2016
, “
Construction of Reduced Graphene Oxide Supported Molybdenum Carbides Composite Electrode as High-Performance Anode Materials for Lithium ion Batteries
,”
Mater. Res. Bull.
,
73
(
1
), pp.
459
464
. 10.1016/j.materresbull.2015.09.030
2.
Recham
,
N.
,
Chotard
,
J. N.
,
Dupont
,
L.
,
Delacourt
,
C.
,
Walker
,
W.
,
Armand
,
M.
, and
Tarascon
,
J.-M.
,
2010
, “
A 3.6 V Lithium-Based Fluorosulphate Insertion Positive Electrode for Lithium-Ion Batteries
,”
Nat. Mater.
,
9
(
1
), pp.
68
74
. 10.1038/nmat2590
3.
Zhu
,
Y.
,
Liu
,
W.
,
Zhang
,
X.
,
He
,
J.
,
Chen
,
J.
,
Wang
,
Y.
, and
Cao
,
T.
,
2013
, “
Directing Silicon-Graphene Self-Assembly as a Core/Shell Anode for High-Performance Lithium-Ion Batteries
,”
Langmuir
,
29
(
2
), pp.
744
749
. 10.1021/la304371d
4.
Schuster
,
J.
,
He
,
G.
,
Mandlmeier
,
B.
,
Yim
,
T.
,
Lee
,
K. T.
,
Bein
,
T.
, and
Nazar
,
L. F.
,
2012
, “
Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium-Sulfur Batteries
,”
Angew. Chem. Int. Ed.
,
51
(
15
), pp.
3591
3595
. 10.1002/anie.201107817
5.
Guo
,
J.
,
Xu
,
Y.
, and
Wang
,
C.
,
2011
, “
Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium–Sulfur Batteries
,”
Nano Lett.
,
11
(
10
), pp.
4288
4294
. 10.1021/nl202297p
6.
Miroshnikov
,
M.
,
Kato
,
K.
,
Babu
,
G.
,
Thangavel
,
N. K.
,
Mahankali
,
K.
,
Hohenstein
,
E.
,
Wang
,
H.
,
Satapathy
,
S.
,
Divya
,
K. P.
,
Asare
,
H.
,
Ajayan
,
P. M.
,
Arava
,
L. M. R.
, and
John
,
G.
,
2019
, “
Made From Henna! A Fast Charging, High Capacity, and Recyclable Tetrakislawsone Cathode Material for Lithium-ion Batteries
,”
ACS Sustainable Chem. Eng.
,
7
(
16
), pp.
13836
13844
. 10.1021/acssuschemeng.9b01800
7.
Balaji
,
S.
,
Manichandran
,
T.
, and
Mutharasu
,
D.
,
2012
, “
A Comprehensive Study on Influence of Nd3 + Substitution on Properties of LiMn2O4
,”
Bull. Mater. Sci.
,
35
(
3
), pp.
471
480
. 10.1007/s12034-012-0296-4
8.
Abraham
,
D. P.
,
Reynolds
,
E. M.
,
Sammann
,
E.
,
Jansen
,
A. N.
, and
Dees
,
D. W.
,
2005
, “
Aging Characteristics of High-Power Lithium-Ion Cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 Electrodes
,”
Electrochim. Acta
,
51
(
3
), pp.
502
510
. 10.1016/j.electacta.2005.05.008
9.
Moitzheim
,
S.
,
Nimisha
,
C. S.
,
Deng
,
S.
,
Cott
,
D. J.
,
Detavernier
,
C.
, and
Vereecken
,
P. M.
,
2014
, “
Nanostructured TiO2/Carbon Nanosheet Hybrid Electrode for High-Rate Thin-Film Lithium-Ion Batteries
,”
Nanotechnology
,
25
(
50
), p.
504008
. 10.1088/0957-4484/25/50/504008
10.
Fei
,
L.
,
Xu
,
Y.
,
Wu
,
X.
,
Li
,
Y.
,
Xie
,
P.
,
Deng
,
S.
,
Smirnov
,
S.
, and
Luo
,
H.
,
2013
, “
SBA-15 Confined Synthesis of TiNb2O7 Nanoparticles for Lithium-Ion Batteries
,”
Nanoscale
,
5
(
22
), p.
11102
. 10.1039/c3nr03594h
11.
Xia
,
X. H.
,
Deng
,
S.
,
Feng
,
S.
,
Wu
,
J. B.
,
Tu
,
J.
,
2017
, “
Hierarchical Porous Ti2Nb10O29 Nanospheres as Superior Anode Materials for Lithium Ion Storage
,”
J. Mater. Chem. A
,
5
(
40
), pp.
21134
21139
. 10.1039/C7TA07229E
12.
Ashish
,
A. G.
,
Arunkumar
,
P.
,
Babu
,
B.
,
Manikandan
,
P.
,
Sarang
,
S.
, and
Shaijumon
,
M. M.
,
2015
, “
TiNb2O7/Graphene Hybrid Material as High Performance Anode for Lithium-ion Batteries
,”
Electrochim. Acta
,
176
(
1
), pp.
285
292
. 10.1016/j.electacta.2015.06.122
13.
Chen
,
M.
,
Xia
,
X.
,
Qi
,
M.
,
Yuan
,
J.
,
Yin
,
J.
, and
Chen
,
Q.
,
2015
, “
Self-Supported Porous CoO Semisphere Arrays as Binder-Free Electrodes for High-Performance Lithium Ion Batteries
,”
Mater. Res. Bull.
,
73
(
1
), pp.
125
129
.
14.
Chen
,
M.
,
Xia
,
X.
,
Yin
,
J.
, and
Chen
,
Q.
,
2015
, “
Construction of Co3O4 Nanotubes as High-Performance Anode Material for Lithium ion Batteries
,”
Electrochim. Acta.
,
160
(
1
), pp.
15
21
. 10.1016/j.electacta.2015.02.055
15.
Sawas
,
A.
,
Babu
,
G.
,
Thangavel
,
N. K.
, and
Arava
,
L. M. R.
,
2019
, “
Electrocatalysis Driven High Energy Density Li-Ion Polysulfide Battery
,”
Electrochim. Acta
,
307
(
1
), pp.
253
259
. 10.1016/j.electacta.2019.03.191
16.
Ayala
,
P.
,
Freire
,
L. F.
, Jr.
,
Gu
,
L.
,
Smith
,
D. J.
,
Solórzano
,
I. G.
,
Macedo
,
D. W.
,
Vander Sande
,
J. B.
,
Terrones
,
H.
,
Rodriguez-Manzo
,
J.
,.
Terrones
,
M.
,
2006
, “
Decorating Carbon Nanotubes with Nanostructured Nickel Particles via Chemical Methods
,”
Chem. Phys. Lett.
,
431
(
1–3
), pp.
104
109
. 10.1016/j.cplett.2006.09.039
17.
Małecki
,
A.
, and
Małecka
,
B.
,
2006
, “
Formation of N2O During Thermal Decomposition of d-Metal Hydrates Nitrates
,”
Thermochim. Acta
,
446
(
1–2
), pp.
113
116
. 10.1016/j.tca.2006.02.006
18.
Nataraj
,
S. K.
,
Kim
,
B. H.
,
Yun
,
J. H.
,
Lee
,
D. H.
,
Aminabhavi
,
T. M.
, and
Yang
,
K. S.
, “
Effect of Added Nickel Nitrate on the Physical, Thermal and Morphological Characteristics of Polyacrylonitrile-Based Carbon Nanofibers
,”
Mater. Sci. Eng., B
,
162
(
2
), pp.
75
81
. 10.1016/j.mseb.2009.03.008
19.
Park
,
H.
,
Wu
,
H. B.
,
Song
,
T.
,
David Lou
,
X. W.
, and
Paik
,
U.
,
2015
, “
Porosity-Controlled TiNb2O7 Microspheres With Partial Nitridation as A Practical Negative Electrode for High-Power Lithium-Ion Batteries
,”
Adv. Energy Mater.
,
5
(
8
), p.
1401945
. 10.1002/aenm.201401945
20.
Shen
,
S.
,
Deng
,
S.
,
Zhong
,
Y.
,
Wu
,
J.
,
Wang
,
X.
,
Xia
,
X.
, and
Tu
,
J.
,
2017
, “
Binder-Free Carbon Fiber/TiNb2O7 Composite Electrode as Superior High-Rate Anode for Lithium Ions Batteries
,”
Chinese Chem. Letter.
,
28
(
12
), pp.
2219
2222
. 10.1016/j.cclet.2017.11.031
21.
Yang
,
C.
,
Yu
,
S.
,
Ma
,
Y.
,
Lin
,
C.
,
Xu
,
Z.
,
Zhao
,
H.
,
Wu
,
S.
,
Zheng
,
P.
,
Zhu
,
Z.-Z.
,
Li
,
J.
, and
Wang
,
N.
,
2017
, “
Cr3+ and Nb5+ co-Doped Ti2Nb10O29 Materials for High-Performance Lithium-Ion Storage
,”
J. Power Sources
,
360
(
31
), pp.
470
479
. 10.1016/j.jpowsour.2017.06.026
22.
Park
,
H.
,
Song
,
T.
, and
Paik
,
U.
,
2015
, “
Porous TiNb2O7 Nanofibers Decorated With Conductive Ti1−XNbxN Bumps as a High Power Anode Material for Li-ion Batteries
,”
J. Mater. Chem. A
,
3
(
16
), pp.
8590
8596
. 10.1039/C5TA00467E
23.
Li
,
H.
,
Shen
,
L.
,
Pang
,
G.
,
Fang
,
S.
,
Luo
,
H.
,
Yang
,
K.
, and
Zhang
,
X.
,
2014
, “
TiNb2O7 Nanoparticles Assembled Into Hierarchical Microspheres as High-Rate Capability and Long-Cycle-Life Anode Materials for Lithium ion Batteries
,”
Nanoscale
,
7
(
2
), pp.
619
624
. 10.1039/C4NR04847D
24.
Shen
,
S.
,
Guo
,
W.
,
Xie
,
D.
,
Wang
,
Y.
, and
Tu
,
J.
,
2018
, “
Synergistic Vertical Graphene Skeleton and S-C Shell to Construct High-Performance TiNb2O7-Based Core/Shell Arrays
,”
J. Mater. Chem. A
,
6
(
41
), pp.
1
10
.
25.
Kim
,
S.
,
Fang
,
S.
,
Zhang
,
Z.
,
Chen
,
J.
,
Yang
,
L.
,
Penner-Hahn
,
J. E.
, and
Deb
,
A.
,
2014
, “
The Electrochemical and Local Structural Analysis of the Mesoporous Li 4Ti5O12 Anode
,”
J. Power Sources
,
268
(
4
), pp.
294
300
. 10.1016/j.jpowsour.2014.06.018
26.
Hasegawa
,
G.
,
Kanamori
,
K.
,
Kiyomura
,
T.
,
Kurata
,
H.
,
Nakanishi
,
K.
, and
Abe
,
T.
,
2015
, “
Hierarchically Porous Li4Ti5O12 Anode Materials for Li- and Na-Ion Batteries: Effects of Nanoarchitectural Design and Temperature Dependence of the Rate Capability
,”
Adv. Energy Mater.
,
5
(
1
), p.
1400730
. 10.1002/aenm.201400730
27.
Deng
,
D.
,
Kim
,
M. G.
,
Lee
,
J. Y.
, and
Cho
,
J.
,
2009
, “
Green Energy Storage Materials: Nanostructured TiO2 and Sn-Based Anodes for Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
2
(
8
), pp.
818
837
. 10.1039/b823474d
You do not currently have access to this content.