Abstract

The present study numerically investigates the implication of different porosity configurations, viz., uniform, algebraic, trigonometric, logarithmic, and stepwise constant porosities at the negative electrode on performance characteristics of Lithium-ion cell. We assess the merit of nonuniform porosity over uniform one in terms of cell performance characteristics, viz., specific energy, capacity, electrolyte salt concentration, local volumetric current density, power dissipation density, and solid lithium concentration. Our results reveal that specific energy and capacity are found to be maximum when the porosity increases logarithmically in the direction from the negative electrode–current collector to negative electrode–separator interface. Also, it is found that the variation of power dissipation density and electrolyte salt concentration characteristics are dictated by the interplay of the porosity and the length of the negative electrode. Furthermore, the effect of charging rates (quick charge, fast charge, and ultrafast charge) on cell performance is carried out. It is seen that the increment in C-rates strongly influences the cell performance. It is found that the average capacity increases by 44% at the higher C-rate, i.e., 5C when the porosity increases logarithmically. On the contrary, sinusoidal variation in porosity yields in the worst cell performance. The findings of the present study bear utility toward designing an efficient battery system that can operate for a higher number of cycles with minimal power dissipation density and can fit into the ultrafast charging technique.

References

References
1.
Liao
,
X.
,
Peng
,
X.
,
Garg
,
A.
, and
Bao
,
N.
,
2019
, “
Temperature Distribution Optimization of an Air-Cooling Lithium-Ion Battery Pack in Electric Vehicles Based on the Response Surface Method
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
041002
. 10.1115/1.4042922
2.
Doyle
,
M.
,
Newman
,
J.
,
Gozdz
,
A. S.
,
Schmutz
,
C. N.
, and
Tarascon
,
J. M.
,
1996
, “
Comparison of Modeling Predictions With Experimental Data From Plastic Lithium Ion Cells
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1890
1903
. 10.1149/1.1836921
3.
Doyle
,
M.
, and
Fuentes
,
Y.
,
2003
, “
Computer Simulations of a Lithium-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs
,”
J. Electrochem. Soc.
,
150
(
6
), pp.
A706
A713
. 10.1149/1.1569478
4.
Ling
,
Z.
,
Zhang
,
Z.
,
Shi
,
G.
,
Fang
,
X.
,
Wang
,
L.
,
Gao
,
X.
,
Fang
,
Y.
,
Xu
,
T.
,
Wang
,
S.
, and
Liu
,
X.
,
2014
, “
Review on Thermal Management Systems Using Phase Change Materials for Electronic Components, Li-Ion Batteries and Photovoltaic Modules
,”
Renewable Sustainable Energy
,
31
, pp.
427
438
. 10.1016/j.rser.2013.12.017
5.
Shah
,
K.
,
Vishwakarma
,
V.
, and
Jain
,
A.
,
2016
, “
Measurement of Multiscale Thermal Transport Phenomena in Li-Ion Cells: A Review
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
3
), p.
030801
. 10.1115/1.4034413
6.
Mistry
,
A.
,
Juarez-Robles
,
D.
,
Stein
,
M.
,
Smith
,
K.
, and
Mukherjee
,
P. P.
,
2016
, “
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
3
), p.
031006
. 10.1115/1.4035198
7.
Chatterjee
,
K.
,
Majumdar
,
P.
,
Schroeder
,
D.
, and
Kilaparti
,
S. R.
,
2019
, “
Performance Analysis of Li-Ion Battery Under Various Thermal and Load Conditions
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
2
), p.
021006
. 10.1115/1.4041983
8.
Sun
,
Y.-X.
,
Guan
,
H.-M.
,
Jiang
,
Z.-H.
, and
Wang
,
Z.-B.
,
2019
, “
Study on Prelithiation Technology of Hard Carbon Electrode Using Stable Metal Lithium Powder
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
2
), p.
021007
. 10.1115/1.4041980
9.
Raijmakersa
,
L. H. J.
,
Danilova
,
D. L.
,
Eichela
,
R.-A.
, and
Notten
,
P. H. L.
,
2019
, “
A Review on Various Temperature-Indication Methods for Li-Ion Batteries
,”
Appl. Energy
,
240
, pp.
918
945
. 10.1016/j.apenergy.2019.02.078
10.
Ma
,
S.
,
Jiang
,
M.
,
Tao
,
P.
,
Song
,
C.
,
Wu
,
J.
,
Wang
,
J.
,
Deng
,
T.
, and
Shang
,
W.
,
2018
, “
Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review
,”
Prog. Nat. Sci.: Mater. Int.
,
28
(
6
), pp.
653
666
. 10.1016/j.pnsc.2018.11.002
11.
Mistry
,
A. N.
, and
Mukherjee
,
P. P.
,
2019
, “
Probing Spatial Coupling of Resistive Modes in Porous Intercalation Electrodes Through Impedance Spectroscopy
,”
Phys. Chem. Chem. Phys.
,
21
(
7
), pp.
3805
3813
. 10.1039/C8CP05109G
12.
Baade
,
P.
,
Ebner
,
M.
, and
Wood
,
V.
,
2017
, “
Rapid, Non-Invasive Method for Quantifying Particle Orientation Distributions in Graphite Anodes
,”
J. Electrochem. Soc.
,
164
(
12
), pp.
E348
E351
. 10.1149/2.1291712jes
13.
Peterson
,
S. W.
, and
Wheeler
,
D. R.
,
2014
, “
Direct Measurements of Effective Electronic Transport in Porous Li-Ion Electrodes
,”
J. Electrochem. Soc.
,
161
(
14
), pp.
A2175
A2181
. 10.1149/2.0661414jes
14.
Radhakrishnan
,
K. N.
,
Coupar
,
T.
,
Nelson
,
D. J.
, and
Ellis
,
M. W.
,
2009
, “
Experimental Evaluation of the Effect of Cycle Profile on the Durability of Commercial Lithium Ion Power Cells
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
1
), p.
011012
. 10.1115/1.4041013
15.
Fuller
,
T. F.
,
Doyle
,
M.
, and
Newman
,
J.
,
1994
, “
Simulation and Optimization of the Dual Lithium Ion Insertion Cell
,”
J. Electrochem. Soc.
,
141
(
1
), pp.
1
10
. 10.1149/1.2054684
16.
Nyman
,
A.
,
Zavalis
,
T. G.
,
Elger
,
R.
,
Behm
,
M.
, and
Lindbergh
,
G.
,
2010
, “
Analysis of the Polarization in a Li-Ion Battery Cell by Numerical Simulations
,”
J. Electrochem. Soc.
,
157
(
11
), pp.
A1236
A1246
. 10.1149/1.3486161
17.
Ravikumar
,
B.
,
Mynam
,
M.
, and
Rai
,
B.
,
2018
, “
Effect of Salt Concentration on Properties of Lithium Ion Battery Electrolytes: A Molecular Dynamics Study
,”
J. Phys. Chem.
,
122
(
15
), pp.
8173
8181
. 10.1021/acs.jpcc.8b02072
18.
Ji
,
Y.
,
Zhang
,
Y.
, and
Wang
,
C.-Y.
,
2013
, “
Li-Ion Cell Operation at Low Temperatures
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A636
A649
. 10.1149/2.047304jes
19.
Mukherjee
,
P. P.
,
Mistry
,
A.
, and
Verma
,
A.
,
2017
, “Porous Media Applications: Electrochemical Systems,”
Modeling Transport Phenomena in Porous Media With Applications
,
M. K.
Das
,
P. P.
Mukherjee
, and
K.
Muralidhar
, eds.,
Springer
,
New York
. pp.
93
122
.
20.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
. 10.1149/1.2221597
21.
Suthar
,
B.
,
Northrop
,
P. W.
,
Rife
,
D.
, and
Subramanian
,
V. R.
,
2015
, “
Effect of Porosity, Thickness and Tortuosity on Capacity Fade of Anode
,”
J. Electrochem. Soc.
,
162
(
9
), pp.
A1708
A1717
. 10.1149/2.0061509jes
22.
Ramadesigan
,
V.
,
Methekar
,
R. N.
,
Latinwo
,
F.
,
Braatz
,
R. D.
, and
Subramanian
,
V. R.
,
2010
, “
Optimal Porosity Distribution for Minimized Ohmic Drop Across a Porous Electrode
,”
J. Electrochem. Soc.
,
157
(
12
), pp.
A1328
A1334
. 10.1149/1.3495992
23.
Hosseinzadeh
,
E.
,
Marco
,
J.
, and
Jennings
,
P.
,
2017
, “
Electrochemical-Thermal Modelling and Optimisation of Lithium-Ion Battery Design Parameters Using Analysis of Variance
,”
Energies
,
10
(
9
), pp.
1
22
. 10.3390/en10091278
24.
Venugopal
,
G.
,
Moore
,
J.
,
Howard
,
J.
, and
Pendalwar
,
S.
,
1999
, “
Characterization of Microporous Separators for Lithium-Ion Batteries
,”
J. Power Sources
,
77
(
1
), pp.
34
41
. 10.1016/S0378-7753(98)00168-2
25.
Bae
,
C. J.
,
Erdonmez
,
C. K.
,
Halloran
,
J. W.
, and
Chiang
,
Y. M.
,
2013
, “
Design of Battery Electrodes With Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance
,”
Adv. Mater.
,
25
(
9
), pp.
1254
1258
. 10.1002/adma.201204055
26.
Delattre
,
B.
,
Amin
,
R.
,
Sander
,
J.
,
De Coninck
,
J.
,
Tomsia
,
A. P.
, and
Chiang
,
Y. M.
,
2018
, “
Impact of Pore Tortuosity on Electrode Kinetics in Lithium Battery Electrodes: Study in Directionally Freeze-Cast LiNi0.8Co0.15Al0.05O2 (NCA)
,”
J. Electrochem. Soc.
,
165
(
2
), pp.
A388
A395
. 10.1149/2.1321802jes
27.
Sander
,
J. S.
,
Erb
,
R. M.
,
Li
,
L.
,
Gurijala
,
A.
, and
Chiang
,
Y. M.
,
2016
, “
High-Performance Battery Electrodes via Magnetic Templating
,”
Nat. Energy
,
1
(
8
), p.
16099
. 10.1038/nenergy.2016.99
28.
Wood
,
V.
, and
Ebner
,
M. O. J.
,
Eidgenoessische Technische Hochschule Zurich (ETHZ)
,
2016
, “
Method for the Production of Electrodes and Electrodes Made Using Such a Method
,” U.S. Patent Application 14/785,163.
29.
Billaud
,
J.
,
Bouville
,
F.
,
Magrini
,
T.
,
Villevieille
,
C.
, and
Studart
,
A. R.
,
2016
, “
Magnetically Aligned Graphite Electrodes for High-Rate Performance Li-Ion Batteries
,”
Nat. Energy
,
1
(
8
), p.
16097
. 10.1038/nenergy.2016.97
30.
Reddy
,
T.
,
2011
,
Linden's Handbook of Batteries
, 4th ed.,
McGraw-Hill Education
,
New York
.
31.
Smith
,
K.
, and
Wang
,
C. Y.
,
2006
, “
Power and Thermal Characterization of a Lithium-Ion Battery Pack for Hybrid-Electric Vehicles
,”
J. Power Sources
,
160
(
1
), pp.
662
673
. 10.1016/j.jpowsour.2006.01.038
32.
Dickinson
,
E. J.
,
Ekström
,
H.
, and
Fontes
,
E.
,
2014
, “
COMSOL Multiphysics®: Finite Element Software for Electrochemical Analysis. A Mini-Review
,”
Electrochem. Commun.
,
40
, pp.
71
74
. 10.1016/j.elecom.2013.12.020
33.
Mistry
,
A. N.
,
Smith
,
K.
, and
Mukherjee
,
P. P.
,
2018
, “
Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes
,”
ACS Appl. Mater. Interfaces
,
10
(
7
), pp.
6317
6326
. 10.1021/acsami.7b17771
34.
Taleghani
,
S. T.
,
Marcos
,
B.
,
Zaghib
,
K.
, and
Lantagne
,
G.
,
2017
, “
A Study on the Effect of Porosity and Particles Size Distribution on Li-Ion Battery Performance
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3179
E3189
. 10.1149/2.0211711jes
35.
Newman
,
J.
, and
Thomas-Alyea
,
K. E.
,
2004
,
Electrochemical Systems
, 3rd ed.,
Wiley-Interscience
,
New Jersey
.
36.
Crompton
,
T. P.
,
2000
,
Battery Reference Book
, 3rd ed.,
Elsevier
,
New York
.
You do not currently have access to this content.