Abstract

The state of charge (SoC) of the battery is a typical characterization of the operating state of the battery and criterion for the battery management system (BMS) control strategy, which must be evaluated precisely. The establishment of an accurate algorithm of SoC estimation is of great significance for BMS, which can help the driver judge the endurance mileage of electric vehicle (EV) correctly. In this paper, a second-order resistor-capacity (RC) equivalent circuit model is selected to characterize the electrical characteristics based on the electrochemical model of the LiFePO4/graphene (LFP/G) hybrid cathode lithium-ion battery. Moreover, seven open circuit voltage (OCV) models are compared and the best one of them is used to simulate the dynamic characteristics of the battery. It is worth mentioning that an improved test method is proposed, which is combined with least square for parameters identification. In addition, the extended Kalman filter (EKF) algorithm is selected to estimate the SoC during the charging and discharging processes. The simulation results show that the EKF algorithm has the higher accuracy and rapidity than the KF algorithm.

References

References
1.
Zheng
,
Y.
,
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
, and
Ouyang
,
M.
,
2013
, “
LiFePO4 Battery Pack Capacity Estimation for Electric Vehicles Based on Charging Cell Voltage Curve Transformation
,”
J. Power Sources
,
226
, pp.
33
41
. 10.1016/j.jpowsour.2012.10.057
2.
Feng
,
T.
,
Yang
,
L.
,
Zhao
,
X.
,
Zhang
,
H.
, and
Qiang
,
J.
,
2015
, “
Online Identification of Lithium-Ion Battery Parameters Based on an Improved Equivalent-Circuit Model and Its Implementation on Battery State-of-Power Prediction
,”
J. Power Sources
,
281
, pp.
192
203
. 10.1016/j.jpowsour.2015.01.154
3.
Kang
,
J.
,
Yan
,
F.
,
Zhang
,
P.
, and
Du
,
C.
,
2014
, “
Comparison of Comprehensive Properties of Ni-MH (Nickel-Metal Hydride) and Li-Ion (Lithium-Ion) Batteries in Terms of Energy Efficiency
,”
Energy
,
70
, pp.
618
625
. 10.1016/j.energy.2014.04.038
4.
Li
,
Y.
,
Qi
,
F.
,
Guo
,
H.
,
Guo
,
Z.
,
Li
,
M.
, and
Wu
,
W.
,
2019
, “
Characteristic Investigation of an Electrochemical-Thermal Coupled Model for a LiFePO4/Graphene Hybrid Cathode Lithium-Ion Battery
,”
Case Stud. Therm. Eng.
,
13
, p.
100387
. 10.1016/j.csite.2018.100387
5.
Krieger
,
E. M.
,
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2013
, “
A Comparison of Lead-Acid and Lithium-Based Battery Behavior and Capacity Fade in Off-Grid Renewable Charging Applications
,”
Energy
,
60
, pp.
492
500
. 10.1016/j.energy.2013.08.029
6.
Zhang
,
X.
,
Kong
,
X.
,
Li
,
G.
, and
Li
,
J.
,
2014
, “
Thermodynamic Assessment of Active Cooling/Heating Methods for Lithium-Ion Batteries of Electric Vehicles in Extreme Conditions
,”
Energy
,
64
, pp.
1092
1101
. 10.1016/j.energy.2013.10.088
7.
Yu
,
Q.
,
Xiong
,
R.
,
Lin
,
C.
,
Shen
,
W.
, and
Deng
,
J.
,
2017
, “
Lithium-Ion Battery Parameters and State-of-Charge Joint Estimation Based on H-Infinity and Unscented Kalman Filters
,”
IEEE Trans. Veh. Technol.
,
66
(
10
), pp.
8693
8701
. 10.1109/TVT.2017.2709326
8.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
. 10.1016/j.mattod.2014.10.040
9.
Weng
,
C.
,
Sun
,
J.
, and
Peng
,
H.
,
2014
, “
A Unified Open-Circuit-Voltage Model of Lithium-Ion Batteries for State-of-Charge Estimation and State-of-Health Monitoring
,”
J. Power Sources
,
258
, pp.
228
237
. 10.1016/j.jpowsour.2014.02.026
10.
De las Casas
,
C.
, and
Li
,
W.
,
2012
, “
A Review of Application of Carbon Nanotubes for Lithium Ion Battery Anode Material
,”
J. Power Sources
,
208
, pp.
74
85
. 10.1016/j.jpowsour.2012.02.013
11.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 3. State and Parameter Estimation
,”
J. Power Sources
,
134
(
2
), pp.
277
292
. 10.1016/j.jpowsour.2004.02.033
12.
Mahankali
,
K.
,
Thangavel
,
N. K.
,
Ding
,
Y.
,
Putatunda
,
S. K.
, and
Arava
,
L. M. R.
,
2019
, “
Interfacial Behavior of Water-in-Salt Electrolytes at Porous Electrodes and Its Effect on Supercapacitor Performance
,”
Electrochim. Acta
,
326
, p.
134989
. 10.1016/j.electacta.2019.134989
13.
Sawas
,
A.
,
Babu
,
G.
,
Thangavel
,
N. K.
, and
Arava
,
L. M. R.
,
2019
, “
Electrocatalysis Driven High Energy Density Li-Ion Polysulfide Battery
,”
Electrochim. Acta
,
307
, pp.
253
259
. 10.1016/j.electacta.2019.03.191
14.
Cho
,
I.
,
Choi
,
J.
,
Kim
,
K.
,
Ryou
,
M. H.
, and
Lee
,
Y. M.
,
2019
, “
A Comparative Investigation of Carbon Black (Super-P) and Vapor-Grown Carbon Fibers (VGCFs) as Conductive Additives for Lithium-Ion Battery Cathodes
,”
RSC Adv.
,
5
(
115
), pp.
95073
95078
. 10.1039/C5RA19056H
15.
Wang
,
Q.
,
Kang
,
J.
,
Tan
,
Z.
, and
Luo
,
M.
,
2018
, “
An Online Method to Simultaneously Identify the Parameters and Estimate States for Lithium Ion Batteries
,”
Electrochim. Acta
,
289
, pp.
376
388
. 10.1016/j.electacta.2018.08.076
16.
Mihet-Popa
,
L.
, and
Groza
,
V.
,
2015
, “
Battery Management System Test Platform Developed for Electric Vehicle Applications
,”
IEEE 9th International Symposium on Intelligent Signal Processing (WISP) Proceedings
,
Siena, Italy
,
May 15–17
, pp.
1
6
.
17.
Lee
,
S.
,
Kim
,
J.
,
Lee
,
J.
, and
Cho
,
B. H.
,
2008
, “
State-of-Charge and Capacity Estimation of Lithium-Ion Battery Using a New Open-Circuit Voltage Versus State-of-Charge
,”
J. Power Sources
,
185
(
2
), pp.
1367
1373
. 10.1016/j.jpowsour.2008.08.103
18.
Rodrigues
,
S.
,
Munichandraiah
,
N.
, and
Shukla
,
A. K.
,
2000
, “
A Review of State-of-Charge Indication of Batteries by Means of A.C. Impedance Measurements
,”
J. Power Sources
,
87
(
1–2
), pp.
12
20
. 10.1016/S0378-7753(99)00351-1
19.
Li
,
Z.
,
Huang
,
J.
,
Liaw
,
B. Y.
, and
Zhang
,
J.
,
2017
, “
On State-of-Charge Determination for Lithium-Ion Batteries
,”
J. Power Sources
,
348
, pp.
281
301
. 10.1016/j.jpowsour.2017.03.001
20.
Huang
,
C.
,
Wang
,
Z.
,
Zhao
,
Z.
,
Wang
,
L.
,
Lai
,
C. S.
, and
Wang
,
D.
,
2018
, “
Robustness Evaluation of Extended and Unscented Kalman Filter for Battery State of Charge Estimation
,”
IEEE Access
,
6
, pp.
27617
27628
. 10.1109/ACCESS.2018.2833858
21.
Chiang
,
Y. H.
,
Sean
,
W. Y.
, and
Ke
,
J. C.
,
2011
, “
Online Estimation of Internal Resistance and Open-Circuit Voltage of Lithium-Ion Batteries in Electric Vehicles
,”
J. Power Sources
,
196
(
8
), pp.
3921
3932
. 10.1016/j.jpowsour.2011.01.005
22.
Dong
,
G.
,
Wei
,
J.
,
Chen
,
Z.
,
Sun
,
H.
, and
Yu
,
X.
,
2017
, “
Remaining Dischargeable Time Prediction for Lithium-Ion Batteries Using Unscented Kalman Filter
,”
J. Power Sources
,
364
, pp.
316
327
. 10.1016/j.jpowsour.2017.08.040
23.
Arasaratnam
,
I.
,
Haykin
,
S.
, and
Hurd
,
T. R.
,
2010
, “
Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations
,”
IEEE Trans. Signal Process.
,
58
(
10
), pp.
4977
4993
. 10.1109/TSP.2010.2056923
24.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Shen
,
W.
,
2016
, “
Lithium-Ion Battery Pack State of Charge and State of Energy Estimation Algorithms Using a Hardware-in-the-Loop Validation
,”
IEEE Trans. Power Electron.
,
32
(
6
), pp.
4421
4431
. 10.1109/TPEL.2016.2603229
25.
Chin
,
C.
, and
Gao
,
Z.
,
2018
, “
State-of-charge Estimation of Battery Pack Under Varying Ambient Temperature Using an Adaptive Sequential Extreme Learning Machine
,”
Energies
,
11
(
4
), p.
711
. 10.3390/en11040711
26.
Xia
,
B.
,
Wang
,
H.
,
Wang
,
M.
,
Sun
,
W.
,
Xu
,
Z.
, and
Lai
,
Y.
,
2015
, “
A new Method for State of Charge Estimation of Lithium-ion Battery Based on Strong Tracking Cubature Kalman Filter
,”
Energies
,
8
(
12
), pp.
13458
13472
. 10.3390/en81212378
27.
Shao
,
S.
,
Bi
,
J.
,
Yang
,
F.
, and
Guan
,
W.
,
2014
, “
On-Line Estimation of State-of-Charge of Li-Ion Batteries in Electric Vehicle Using the Resampling Particle Filter
,”
Transp. Res. Part D: Transp. Environ.
,
32
, pp.
207
217
. 10.1016/j.trd.2014.07.013
28.
Shrivastava
,
P.
,
Soon
,
T. K.
,
Idris
,
M. Y. I. B.
, and
Mekhilef
,
S.
,
2019
, “
Overview of Model-Based Online State-of-Charge Estimation Using Kalman Filter Family for Lithium-Ion Batteries
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109233
. 10.1016/j.rser.2019.06.040
29.
Hannan
,
M. A.
,
Lipu
,
M. S. H.
,
Hussain
,
A.
, and
Mohamed
,
A.
,
2017
, “
A Review of Lithium-Ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
834
854
. 10.1016/j.rser.2017.05.001
30.
Shang
,
Y.
,
Zhang
,
C.
,
Cui
,
N.
, and
Guerrero
,
J. M.
,
2015
, “
A Cell-to-Cell Battery Equalizer With Zero-Current Switching and Zero-Voltage Gap Based on Quasi-Resonant LC Converter and Boost Converter
,”
IEEE Trans. Power Electron.
,
30
(
7
), pp.
3731
3747
.10.1109/TPEL.2014.2345672
31.
Chaoui
,
H.
, and
Gualous
,
H.
,
2017
, “
Online Parameter and State Estimation of Lithium-Ion Batteries Under Temperature Effects
,”
Electr. Power Syst. Res.
,
145
, pp.
73
82
. 10.1016/j.epsr.2016.12.029
32.
Dang
,
X.
,
Yan
,
L.
,
Xu
,
K.
,
Wu
,
X.
,
Jiang
,
H.
, and
Sun
,
H.
,
2016
, “
Open-Circuit Voltage-based State of Charge Estimation of Lithium-Ion Battery Using Dual Neural Network Fusion Battery Model
,”
Electrochim. Acta
,
188
, pp.
356
366
. 10.1016/j.electacta.2015.12.001
33.
Chen
,
C.
,
Xiong
,
R.
,
Yang
,
R.
,
Shen
,
W.
, and
Sun
,
F.
,
2019
, “
State-of-Charge Estimation of Lithium-Ion Battery Using an Improved Neural Network Model and Extended Kalman Filter
,”
J. Cleaner Prod.
,
234
, pp.
1153
1164
. 10.1016/j.jclepro.2019.06.273
34.
Wang
,
L.
,
Lu
,
D.
,
Liu
,
Q.
,
Liu
,
L.
, and
Zhao
,
X.
,
2019
, “
State of Charge Estimation for LiFePO4 Battery via Dual Extended Kalman Filter and Charging Voltage Curve
,”
Electrochim. Acta
,
296
, pp.
1009
1017
. 10.1016/j.electacta.2018.11.156
35.
Pan
,
H.
,
,
Z.
,
Lin
,
W.
,
Li
,
J.
, and
Chen
,
L.
,
2017
, “
State of Charge Estimation of Lithium-Ion Batteries Using a Grey Extended Kalman Filter and a Novel Open-Circuit Voltage Model
,”
Energy
,
138
, pp.
764
775
. 10.1016/j.energy.2017.07.099
36.
Edwards
,
P. M.
,
2002
, “
Origin 7.0: Scientific Graphing and Data Analysis Software
,”
J. Chem. Inf. Comput. Sci.
,
42
(
5
), pp.
1270
1271
. 10.1021/ci0255432
37.
Liu
,
E. Y.
,
Guo
,
Z.
,
Zhang
,
X.
,
Jojic
,
V.
, and
Wang
,
W.
,
2012
, “
Metric Learning From Relative Comparisons by Minimizing Squared Residual
,”
IEEE 12th International Conference on Data Mining
,
Brussels, Belgium
,
Dec. 10– 13
, pp.
978
983
.
38.
Hunt
,
G.
, and
Motloch
,
C.
,
2003
, “
Freedom Car Battery Test Manual for Power-Assist Hybrid Electric Vehicles
,”
INEEL
,
Idaho Falls, ID
.
39.
Ohm
,
G. S.
,
1827
,
Die Galvanische Kette, Mathematische Bearbeitet
,
T. H. Riemann
,
Berlin
.
40.
Saad
,
Y.
, and
Schultz
,
M. H.
,
1986
, “
GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
7
(
3
), pp.
856
869
. 10.1137/0907058
41.
Lobo
,
V. G.
, and
Fonseca
,
T. C.
,
2020
, “
Bayesian Residual Analysis for Spatially Correlated Data
,”
Stat. Modell.
,
20
(
2
), pp.
171
194
. 10.1177/1471082X18811529
42.
Daowd
,
M.
,
Omar
,
N.
,
Van Den Bossche
,
P.
, and
Van Mierlo
,
J.
,
2011
, “
Passive and Active Battery Balancing Comparison Based on MATLAB Simulation
,”
Proceedings of IEEE Vehicle Power Propulsion Conference
,
Chicago, IL
,
Sept. 6–9
, pp.
1
7
.
43.
Xiong
,
R.
,
He
,
H.
,
Sun
,
F.
, and
Zhao
,
K.
,
2012
, “
Online Estimation of Peak Power Capability of Li-Ion Batteries in Electric Vehicles by a Hardware-in-Loop Approach
,”
Energies
,
5
(
5
), pp.
1455
1469
. 10.3390/en5051455
44.
Tong
,
S.
,
Klein
,
M. P.
, and
Park
,
J. W.
,
2015
, “
On-Line Optimization of Battery Open Circuit Voltage for Improved State-of-Charge and State-of-Health Estimation
,”
J. Power Sources
,
293
, pp.
416
428
. 10.1016/j.jpowsour.2015.03.157
45.
Chen
,
M.
, and
Rincon-Mora
,
G. A.
,
2006
, “
Accurate Electrical Battery Model Capable of Predicting Runtime and I-V Performance
,”
IEEE Trans. Energy Convers.
,
21
(
2
), pp.
504
511
. 10.1109/TEC.2006.874229
46.
Zhang
,
C.
,
Wang
,
L. Y.
,
Li
,
X.
,
Chen
,
W.
,
Yin
,
G. G.
, and
Jiang
,
J.
,
2015
, “
Robust and Adaptive Estimation of State of Charge for Lithium-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
62
(
8
), pp.
4948
4957
. 10.1109/TIE.2015.2403796
47.
Zhang
,
C. P.
,
Jiang
,
J. C.
,
Zhang
,
L.
,
Liu
,
S.
,
Wang
,
L.
, and
Loh
,
P.
,
2016
, “
A Generalized SOC-OCV Model for Lithium-ion Batteries and the SOC Estimation for LNMCO Battery
,”
Energies
,
9
(
11
), p.
900
. 10.3390/en9110900
48.
Sidhu
,
A.
,
Izadian
,
A.
, and
Anwar
,
S.
,
2014
, “
Adaptive Nonlinear Model-Based Fault Diagnosis of Li-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
62
(
2
), pp.
1002
1011
. 10.1109/TIE.2014.2336599
49.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
. 10.1126/science.1102896
You do not currently have access to this content.