Abstract

Silicon-based anodes are one of the promising candidates for the next generation high-power/energy density lithium ion batteries (LIBs). However, a major drawback limiting the practical application of the Si anode is that Si experiences a significant volume change during lithiation/delithiation, which induces high stresses causing degradation and pulverization of the anode. This study focuses on crack initiation within a Si anode during the delithiation process. A multi-physics-based finite element (FE) model is built to simulate the electrochemical process and crack generation during delithiation. On top of that, a Gaussian process (GP)-based surrogate model is developed to assist the exploration of the crack patterns within the anode design space. It is found that the thickness of the Si coating layer, TSi, the yield strength of the Si material, σFc, the cohesive strength between Si and the substrate, σFs, and the curvature of the substrate, ρ, have large impacts on the cracking behavior of Si. This coupled FE simulation-GP surrogate model framework is also applicable to other types of LIB electrodes and provides fundamental insights as building blocks to investigate more complex internal geometries.

References

References
1.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
. 10.1038/35104644
2.
McDowell
,
M. T.
,
Lee
,
S. W.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2013
, “
25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries
,”
Adv. Mater.
,
25
(
36
), pp.
4966
4984
. 10.1002/adma.201301795
3.
Armand
,
M.
, and
Tarascon
,
J. M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
. 10.1038/451652a
4.
Limthongkul
,
P.
,
Jang
,
Y.-I.
,
Dudney
,
N. J.
, and
Chiang
,
Y.-M.
,
2003
, “
Electrochemically-Driven Solid-State Amorphization in Lithium-Silicon Alloys and Implications for Lithium Storage
,”
J. Acta Mater.
,
51
(
4
), pp.
1103
1113
. 10.1016/S1359-6454(02)00514-1
5.
Kasavajjula
,
U.
,
Wang
,
C.
, and
Appleby
,
A. J.
,
2007
, “
Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells
,”
J. Power Sources
,
163
(
2
), pp.
1003
1039
. 10.1016/j.jpowsour.2006.09.084
6.
Boukamp
,
B. A.
,
Lesh
,
G. C.
, and
Huggins
,
R. A.
,
1981
, “
All-Solid Lithium Electrodes With Mixed-Conductor Matrix
,”
J. Electrochem. Soc.
,
128
(
4
), pp.
725
729
. 10.1149/1.2127495
7.
Li
,
J.
,
Dozier
,
A. K.
,
Li
,
Y.
,
Yang
,
F.
, and
Cheng
,
Y.-T.
,
2011
, “
Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
158
(
6
), pp.
A689
A694
. 10.1149/1.3574027
8.
Chew
,
H. B.
,
Hou
,
B. Y.
,
Wang
,
X. J.
, and
Xia
,
S. M.
,
2014
, “
Cracking Mechanisms in Lithiated Silicon Thin Film Electrodes
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
4176
4187
. 10.1016/j.ijsolstr.2014.08.008
9.
Shi
,
F. F.
,
Song
,
Z. C.
,
Ross
,
P. N.
,
Somorjai
,
G. A.
,
Ritchie
,
R. O.
, and
Komvopoulos
,
K.
,
2016
, “
Failure Mechanisms of Single-Crystal Silicon Electrodes in Lithium-Ion Batteries
,”
Nat. Commun.
,
7
, p.
11886
.
10.
Yang
,
H.
,
Fan
,
F.
,
Liang
,
W.
,
Guo
,
X.
,
Zhu
,
T.
, and
Zhang
,
S.
,
2014
, “
A Chemo-Mechanical Model of Lithiation in Silicon
,”
J. Mech. Phys. Solids
,
70
, p.
349
361
. 10.1016/j.jmps.2014.06.004
11.
Liu
,
X. H.
,
Zheng
,
H.
,
Zhong
,
L.
,
Huang
,
S.
,
Karki
,
K.
,
Zhang
,
L. Q.
,
Liu
,
Y.
,
Kushima
,
A.
,
Liang
,
W. T.
, and
Wang
,
J. W.
,
2011
, “
Anisotropic Swelling and Fracture of Silicon Nanowires During Lithiation
,”
Nano Lett.
,
11
(
8
), pp.
3312
3318
. 10.1021/nl201684d
12.
Zhang
,
H. G.
, and
Braun
,
P. V.
,
2012
, “
Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes
,”
Nano Lett.
,
12
(
6
), pp.
2778
2783
. 10.1021/nl204551m
13.
Li
,
J.
,
Wang
,
J.
,
Yang
,
J.
,
Ma
,
X.
, and
Lu
,
S.
,
2016
, “
Scalable Synthesis of a Novel Structured Graphite/Silicon/Pyrolyzed-Carbon Composite as Anode Material for High-Performance Lithium-Ion Batteries
,”
J. Alloys Compd.
,
688
, pp.
1072
1079
. 10.1016/j.jallcom.2016.07.148
14.
Yang
,
J.
,
Wang
,
Y.-X.
,
Chou
,
S.-L.
,
Zhang
,
R.
,
Xu
,
Y.
,
Fan
,
J.
,
Zhang
,
W.-X.
,
Liu
,
H. K.
,
Zhao
,
D.
, and
Dou
,
S. X. J. N. E.
,
2015
, “
Yolk-Shell Silicon-Mesoporous Carbon Anode With Compact Solid Electrolyte Interphase Film for Superior Lithium-Ion Batteries
,”
Nano Energy
,
18
, pp.
133
142
.
15.
Ng
,
S. S. Y.
,
Xing
,
Y.
, and
Tsui
,
K. L.
,
2014
, “
A Naive Bayes Model for Robust Remaining Useful Life Prediction of Lithium-Ion Battery
,”
Appl. Energy
,
118
, pp.
114
123
. 10.1016/j.apenergy.2013.12.020
16.
Meng
,
Z.
,
Zhang
,
D.
,
Liu
,
Z.
, and
Li
,
G.
,
2018
, “
An Adaptive Directional Boundary Sampling Method for Efficient Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121406
. 10.1115/1.4040883
17.
Fan
,
X.
,
Wang
,
P.
, and
Hao
,
F.
,
2019
, “
Reliability-Based Design Optimization of Crane Bridges Using Kriging-Based Surrogate Models
,”
J. Struct. Multidiscipl. Optim.
,
59
, pp.
993
1005
.
18.
Zheng
,
Z.
,
Chen
,
B.
,
Gurumukhi
,
Y.
,
Cook
,
J.
,
Ates
,
M. N.
,
Miljkovic
,
N.
,
Braun
,
P. V.
, and
Wang
,
P.
,
2019
, “
Surrogate Model Assisted Design of Silicon Anode Considering Lithiation Induced Stresses
,”
2019 IEEE International Reliability Physics Symposium (IRPS)
,
Monterey, CA
,
Mar. 31–Apr. 4
.
19.
Park
,
J.
,
Lu
,
W.
, and
Sastry
,
A. M.
,
2011
, “
Numerical Simulation of Stress Evolution in Lithium Manganese Dioxide Particles Due to Coupled Phase Transition and Intercalation
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
A201
A206
. 10.1149/1.3526597
20.
Verbrugge
,
M. W.
, and
Cheng
,
Y. T.
,
2009
, “
Stress and Strain-Energy Distributions Within Diffusion-Controlled Insertion-Electrode Particles Subjected to Periodic Potential Excitations
,”
J. Electrochem. Soc.
,
156
(
11
), pp.
A927
A937
. 10.1149/1.3205485
21.
Cheng
,
Y. T.
, and
Verbrugge
,
M. W.
,
2009
, “
Evolution of Stress Within a Spherical Insertion Electrode Particle Under Potentiostatic and Galvanostatic Operation
,”
J. Power Sources
,
190
(
2
), pp.
453
460
. 10.1016/j.jpowsour.2009.01.021
22.
De-Andrés
,
A.
,
Pérez
,
J.
, and
Ortiz
,
M.
,
1999
, “
Elastoplastic Finite Element Analysis of Three-Dimensional Fatigue Crack Growth in Aluminum Shafts Subjected to Axial Loading
,”
Int. J. Solids Struct.
,
36
(
15
), pp.
2231
2258
. 10.1016/S0020-7683(98)00059-6
23.
Deshpande
,
V. S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2001
, “
A Discrete Dislocation Analysis of Near-Threshold Fatigue Crack Growth
,”
Acta Mater.
,
49
(
16
), pp.
3189
3203
. 10.1016/S1359-6454(01)00220-8
24.
Maiti
,
S.
, and
Geubelle
,
P. H.
,
2006
, “
Cohesive Modeling of Fatigue Crack Retardation in Polymers: Crack Closure Effect
,”
Eng. Fract. Mech.
,
73
(
1
), pp.
22
41
. 10.1016/j.engfracmech.2005.07.005
25.
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2012
, “
A Simple Finite Element Model of Diffusion, Finite Deformation, Plasticity and Fracture in Lithium Ion Insertion Electrode Materials
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
4
), p.
045004
. 10.1088/0965-0393/20/4/045004
26.
Xu
,
K.
,
2004
, “
Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
,”
Chem. Rev.
,
104
(
10
), pp.
4303
4417
. 10.1021/cr030203g
27.
Ding
,
N.
,
Xu
,
J.
,
Yao
,
Y. X.
,
Wegner
,
G.
,
Fang
,
X.
,
Chen
,
C. H.
, and
Lieberwirth
,
I.
,
2009
, “
Determination of the Diffusion Coefficient of Lithium Ions in Nano-Si
,”
Solid State Ionics
,
180
(
2–3
), pp.
222
225
. 10.1016/j.ssi.2008.12.015
28.
Cho
,
Y. H.
,
Booh
,
S.
,
Cho
,
E.
,
Lee
,
H.
, and
Shin
,
J.
,
2017
, “
Theoretical Prediction of Fracture Conditions for Delithiation in Silicon Anode of Lithium Ion Battery
,”
APL Mater.
,
5
(
10
), p.
106101
. 10.1063/1.4997978
29.
Beaulieu
,
L. Y.
,
Eberman
,
K. W.
,
Turner
,
R. L.
,
Krause
,
L. J.
, and
Dahn
,
J. R.
,
2001
, “
Colossal Reversible Volume Changes in Lithium Alloys
,”
Electrochem. Solid State Lett.
,
4
(
9
), pp.
A137
A140
. 10.1149/1.1388178
30.
Feifei
,
F.
,
Shan
,
H.
,
Hui
,
Y.
,
Muralikrishna
,
R.
,
Dibakar
,
D.
,
Vivek
,
B. S.
,
Adri
,
C. T. V. D.
,
Sulin
,
Z.
, and
Ting
,
Z.
,
2013
, “
Mechanical Properties of Amorphous Li x Si Alloys: A Reactive Force Field Study
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
7
), p.
074002
. 10.1088/0965-0393/21/7/074002
31.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2016
,
Simulation and the Monte Carlo Method
, Vol.
10
,
John Wiley & Sons
,
Hoboken, NJ
.
32.
Wang
,
Z. Q.
, and
Wang
,
P. F.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
. 10.1115/1.4026033
33.
Wang
,
P. F.
,
Wang
,
Z. Q.
, and
Almaktoom
,
A. T.
,
2014
, “
Dynamic Reliability-Based Robust Design Optimization With Time-Variant Probabilistic Constraints
,”
Eng. Optim.
,
46
(
6
), pp.
784
809
. 10.1080/0305215X.2013.795561
34.
Wang
,
Z. Q.
, and
Wang
,
P. F.
,
2015
, “
A Double-Loop Adaptive Sampling Approach for Sensitivity-Free Dynamic Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
142
, pp.
346
356
. 10.1016/j.ress.2015.05.007
35.
Pikul
,
J. H.
,
Braun
,
P. V.
, and
King
,
W. P.
,
2017
, “
Performance Modeling and Design of Ultra-High Power Microbatteries
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3122
E3131
. 10.1149/2.0151711jes
36.
Zheng
,
Z. Y.
,
Chen
,
B.
,
Fritz
,
N.
,
Gurumukhi
,
Y.
,
Cook
,
J.
,
Ates
,
M. N.
,
Miljkovic
,
N.
,
Braun
,
P. V.
, and
Wang
,
P. F.
,
2019
, “
Lithiation Induced Stress Concentration for 3D Metal Scaffold Structured Silicon Anodes
,”
J. Electrochem. Soc.
,
166
(
10
), pp.
A2083
A2090
. 10.1149/2.1031910jes
37.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), p.
31
35
. 10.1038/nnano.2007.411
38.
Kim
,
H.
, and
Cho
,
J.
,
2008
, “
Superior Lithium Electroactive Mesoporous Si@Carbon Core−Shell Nanowires for Lithium Battery Anode Material
,”
Nano Lett.
,
8
(
11
), pp.
3688
3691
. 10.1021/nl801853x
You do not currently have access to this content.