Abstract

As a potential energy storage cell, the rechargeable magnesium (Mg) battery is limited by poor solid-state diffusion of Mg2+. Hence, the fundamental mechanisms between the electrolyte and the Mg electrode need to be deeply explored. In this work, a doped-Mg electrode/MgCl2 aqueous electrolyte system is constructed to explore the electrolyte structure and transport properties of ions through molecular dynamics simulations. Then, extensive simulations are conducted to study the effect of the doping levels on the electrode/electrolyte interface and ionic diffusivity. According to the number densities of different electrodes (i.e., Mg–Zn, Mg–Al, Mg–Si, and pure Mg), the Mg–Si electrode shows the strongest attraction to the ions in the electrolyte, indicating that the Mg–Si electrode can provide a higher ion storage performance. Moreover, the simulation results also show that the electrode capacitance presents a similar non-monotonic relationship with the increase of potential well depth under different doping ratios. At the doping ratio of 9%, the potential well depth has the strongest impact on the electric double layer (EDL) thickness compared with that of the other two doping ratios. The diffusion coefficient of water molecules weakly depends on the doping ratios and electrode materials. In contrast, the diffusion coefficient of ions varies strongly with the electrode materials, which could change up to 10–30% from its reference value (the diffusion coefficient of the Mg electrode system). This study will potentially provide an understanding of the influences of doped-Mg metal anodes on the structure and transport characteristics of Mg rechargeable batteries.

References

References
1.
Yoo
,
H. D.
,
Shterenberg
,
I.
,
Gofer
,
Y.
,
Gershinsky
,
G.
,
Pour
,
N.
, and
Aurbach
,
D.
,
2013
, “
Mg Rechargeable Batteries: An On-going Challenge
,”
Energy Environ. Sci.
,
6
(
8
), pp.
2265
2279
. 10.1039/c3ee40871j
2.
Ma
,
Y.
,
Li
,
N.
,
Li
,
D.
,
Zhang
,
M.
, and
Huang
,
X.
,
2011
, “
Performance of Mg–14Li–1Al–0.1Ce as Anode for Mg-Air Battery
,”
J. Power Sources
,
196
(
4
), pp.
2346
2350.
. 10.1016/j.jpowsour.2010.07.097
3.
Khoo
,
T.
,
Howlett
,
P. C.
,
Tsagouria
,
M.
,
MacFarlane
,
D. R.
, and
Forsyth
,
M.
,
2011
, “
The Potential for Ionic Liquid Electrolytes to Stabilise the Magnesium Interface for Magnesium/Air Batteries
,”
Electrochim. Acta
,
58
(
1
), pp.
583
588
. 10.1016/j.electacta.2011.10.006
4.
Zhang
,
T.
,
Tao
,
Z.
, and
Chen
,
J.
,
2014
, “
Magnesium-Air Batteries: From Principle to Application
,”
Mater. Horizons.
,
1
(
2
), pp.
196
206
. 10.1039/C3MH00059A
5.
Wu
,
N.
,
Lyu
,
Y. C.
,
Xiao
,
R. J.
,
Yu
,
X.
,
Yin
,
Y. X.
,
Yang
,
X. Q.
,
Li
,
H.
,
Gu
,
L.
, and
Guo
,
Y. G.
,
2014
, “
A Highly Reversible, Low-Strain Mg-Ion Insertion Anode Material for Rechargeable Mg-Ion Batteries
,”
NPG Asia Mater.
,
6
(
8
), p.
e120
. 10.1038/am.2014.61
6.
Parent
,
L. R.
,
Cheng
,
Y.
,
Sushko
,
P. V.
,
Shao
,
Y.
,
Liu
,
J.
,
Wang
,
C. M.
, and
Browning
,
N. D.
,
2015
, “
Realizing the Full Potential of Insertion Anodes for Mg-Ion Batteries Through the Nanostructuring of Sn
,”
Nano Lett.
,
15
(
2
), pp.
1177
1182
. 10.1021/nl5042534
7.
Mortazavi
,
M.
,
Soon
,
E.
, and
Medhekar
,
N. V.
,
2018
, “
First Principles Insights Into Amorphous Mg2Sn Alloy Anode for Mg-Ion Batteries
,” pp.
1
20
. 10.26434/chemrxiv.6462887.v1.
8.
Jin
,
W.
,
Li
,
Z.
,
Wang
,
Z.
, and
Fu
,
Y. Q.
,
2016
, “
Mg Ion Dynamics in Anode Materials of Sn and Bi for Mg-Ion Batteries
,”
Mater Chem Phys.
,
182
, pp.
167
172
. 10.1016/j.matchemphys.2016.07.019
9.
Li
,
X.
,
Gao
,
T.
,
Han
,
F.
,
Han
,
F.
,
Ma
,
Z.
,
Fan
,
X.
,
Hou
,
S.
,
Eidson
,
N.
,
Li
,
W.
, and
Wang
,
C.
,
2018
, “
Reducing Mg Anode Overpotential Via Ion Conductive Surface Layer Formation by Iodine Additive
,”
Adv. Energy Mater.
,
8
(
7
), p.
1701728
. 10.1002/aenm.201701728
10.
Jin
,
W.
,
Wang
,
Z.
, and
Fu
,
Y. Q.
,
2016
, “
Monolayer Black Phosphorus as Potential Anode Materials for Mg-Ion Batteries
,”
J. Mater. Sci.
,
51
(
15
), pp.
7355
7360
. 10.1007/s10853-016-0023-4
11.
Sha
,
M.
,
Dou
,
Q.
,
Luo
,
F.
,
Zhu
,
G.
, and
Wu
,
G.
,
2014
, “
Molecular Insights Into the Electric Double Layers of Ionic Liquids on Au(100) Electrodes
,”
ACS Appl. Mater. Interfaces
,
6
(
15
), pp.
12556
12565
. 10.1021/am502413m
12.
Jiang
,
G.
,
Cheng
,
C.
,
Li
,
D.
, and
Liu
,
J. Z.
,
2016
, “
Molecular Dynamics Simulations of the Electric Double Layer Capacitance of Graphene Electrodes in Mono-Valent Aqueous Electrolytes
,”
Nano Res.
,
9
(
1
), pp.
174
186
. 10.1007/s12274-015-0978-5
13.
Yang
,
H.
,
Bo
,
Z.
,
Yang
,
J.
,
Yan
,
J.
, and
Cen
,
K.
,
2017
, “
Towards Understanding the Effects of van der Waals Strengths on the Electric Double-Layer Structures and Capacitive Behaviors
,”
J. Power Sources
,
366
, pp.
218
225
. 10.1016/j.jpowsour.2017.09.036
14.
Yang
,
H.
,
Yang
,
J.
,
Bo
,
Z.
,
Zhang
,
S.
,
Yan
,
J.
, and
Cen
,
K.
,
2016
, “
Edge Effects in Vertically-Oriented Graphene Based Electric Double-Layer Capacitors
,”
J. Power Sources
,
324
, pp.
309
316
. 10.1016/j.jpowsour.2016.05.072
15.
Yuasa
,
M.
,
Huang
,
X.
,
Suzuki
,
K.
,
Mabuchi
,
M.
, and
Chino
,
Y.
,
2015
, “
Discharge Properties of Mg–Al–Mn–Ca and Mg–Al–Mn Alloys as Anode Materials for Primary Magnesium-Air Batteries
,”
J. Power Sources
,
297
, pp.
449
456
. 10.1016/j.jpowsour.2015.08.042
16.
Wilson
,
S. R.
, and
Mendelev
,
M. I.
,
2016
, “
A Unified Relation for the Solid–Liquid Interface Free Energy of Pure FCC, BCC, and HCP Metals
,”
J. Chem. Phys.
,
144
(
14
), p.
144707
. 10.1063/1.4946032
17.
Mendelev
,
M. I.
,
Asta
,
M.
,
Rahman
,
M. J.
, and
Hoyt
,
J. J.
,
2009
, “
Development of Interatomic Potentials Appropriate for Simulation of Solid–Liquid Interface Properties in Al–Mg Alloys
,”
Philos. Mag.
,
89
(
34–36
), pp.
3269
3285
. 10.1080/14786430903260727
18.
Dickel
,
D. E.
,
Baskes
,
M. I.
,
Aslam
,
I.
, and
Barrett
,
C. D.
,
2018
, “
New Interatomic Potential for Mg–Al–Zn Alloys With Specific Application to Dilute Mg-Based Alloys
,”
Model Simul. Mater. Sci. Eng.
,
26
(
4
), p.
045010
. 10.1088/1361-651X/aabaad
19.
Jelinek
,
B.
,
Groh
,
S.
,
Horstemeyer
,
M. F.
,
Houze
,
J.
,
Kim
,
S. G.
,
Wagner
,
G. J.
,
Moitra
,
A.
, and
Baskes
,
M. I.
,
2012
, “
Modified Embedded Atom Method Potential for Al, Si, Mg, Cu, and Fe Alloys
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
85
(
24
). 10.1103/PhysRevB.85.245102
20.
Mills
,
R.
,
Easteal
,
A. J.
, and
Woolf
,
L. A.
,
1987
, “
Viscosities and Intradiffusion Coefficients in the Ternary System NaCl–MgCl2–H2O at 25 °C
,”
J. Solution. Chem.
,
16
(
10
), pp.
835
840
. 10.1007/BF00650753
21.
Balasubramanian
,
G.
,
Murad
,
S.
,
Kappiyoor
,
R.
, and
Puri
,
I. K.
,
2011
, “
Structure of Aqueous MgSO4 Solution: Dilute to Concentrated
,”
Chem. Phys. Lett.
,
508
(
1–3
), pp.
38
42
. 10.1016/j.cplett.2011.04.010
22.
Faro
,
T. M. C.
,
Thim
,
G. P.
, and
Skaf
,
M. S.
,
2010
, “
A Lennard-Jones Plus Coulomb Potential for Al3+ Ions in Aqueous Solutions
,”
J. Chem. Phys.
,
132
(
11
), p.
114509
. 10.1063/1.3364110
23.
Arab
,
M.
,
Bougeard
,
D.
, and
Smirnov
,
K. S.
,
2004
, “
Structure and Dynamics of Interlayer Species in a Hydrated Zn-Vermiculite
,”
Phys. Chem. Chem. Phys.
,
6
(
9
), p.
2446
. 10.1039/b400554f
24.
Duboué-Dijon
,
E.
,
Mason
,
P. E.
,
Fischer
,
H. E.
, and
Jungwirth
,
P.
,
2018
, “
Hydration and Ion Pairing in Aqueous Mg2+ and Zn2+ Solutions: Force-Field Description Aided by Neutron Scattering Experiments and Ab Initio Molecular Dynamics Simulations
,”
J. Phys. Chem. B
,
122
(
13
), pp.
3296
3306
. 10.1021/acs.jpcb.7b09612
25.
Dang
,
L. X.
,
1995
, “
Mechanism and Thermodynamics of Ion Selectivity in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics Study
,”
J. Am. Chem. Soc.
,
117
(
26
), pp.
6954
6960
. 10.1021/ja00131a018
26.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
. 10.1006/jcph.1995.1039
27.
Ryckaert
,
J. P.
,
Ciccotti
,
G.
, and
Berendsen
,
H. J. C.
,
1977
, “
Numerical Integration of the Cartesian Equations of Motion of a System With Constraints: Molecular Dynamics of n-Alkanes
,”
J. Comput. Phys.
,
23
(
3
), pp.
327
341
. 10.1016/0021-9991(77)90098-5
28.
Alexiadis
,
A.
, and
Kassinos
,
S.
,
2008
, “
Molecular Simulation of Water in Carbon Nanotubes
,”
Chem. Rev.
,
108
(
12
), pp.
5014
5034
. 10.1021/cr078140f
29.
Jorgensen
,
W. L.
,
1981
, “
Quantum and Statistical Mechanical Studies of Liquids. 10. Transferable Intermolecular Potential Functions for Water, Alcohols, and Ethers
,”
J. Am. Chem. Soc.
,
103
(
2
), pp.
335
340
. 10.1021/ja00392a016
30.
Dietz
,
W.
,
Riede
,
W. O.
, and
Heinzinger
,
K.
,
1982
, “
Molecular Dynamics Simulation of an Aqueous MgCl2 Solution
,”
Struct. Results. Zeitschrift fur Naturforsch
,
37
(
9
), pp.
1038
1048
. 10.1515/zna-1982-0911
31.
Hasted
,
J. B.
,
Ritson
,
D. M.
, and
Collie
,
C. H.
,
1948
, “
Dielectric Properties of Aqueous Ionic Solutions. Parts I and II
,”
J. Chem. Phys.
,
16
(
1
), pp.
1
21
. 10.1063/1.1746645
32.
Kasavajjula
,
U.
,
Wang
,
C.
, and
Appleby
,
A. J.
,
2007
, “
Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells
,”
J. Power Sources.
,
163
(
2
), pp.
1003
1039
. 10.1016/j.jpowsour.2006.09.084
33.
Yang
,
J.
,
Winter
,
M.
, and
Besenhard
,
J. O.
,
1996
, “
Small Particle Size Multiphase Li-Alloy Anodes for Lithium-Ion-Batteries
,”
Solid State Ionics
,
90
(
1–4
), pp.
281
287
. 10.1016/S0167-2738(96)00389-X
34.
Huang
,
J.
,
Sumpter
,
B. G.
, and
Meunier
,
V.
,
2008
, “
A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes
,”
Chem.—Eur. J.
,
14
(
22
), pp.
6614
6626
. 10.1002/chem.200800639
35.
Song
,
L.
, and
Evans
,
J. W.
,
2000
, “
Electrochemical-Thermal Model of Lithium Polymer Batteries
,”
J. Electrochem. Soc.
,
147
(
6
), p.
2086
. 10.1149/1.1393490
36.
Kumar
,
G.
,
Kartha
,
T. R.
, and
Mallik
,
B. S.
,
2018
, “
Novelty of Lithium Salt Solution in Sulfone and Dimethyl Carbonate-Based Electrolytes for Lithium-Ion Batteries: A Classical Molecular Dynamics Simulation Study of Optimal Ion Diffusion
,”
J. Phys. Chem. C
,
122
(
46
), pp.
26315
26325
. 10.1021/acs.jpcc.8b06581
You do not currently have access to this content.