Abstract

With the development of portable electronic devices, it is an urgent demand to miniaturize energy storage components, especially for Li-ion batteries, and the thin-film electrode is a promising miniaturization strategy. In this work, we successfully fabricated a binder-free thin-film electrode of LiFePO4/C by a spray drying method. According to the scanning electron microscopy, the Al-foil substrate was coated with a porous LiFePO4/C layer of ca. 4 µm thick, and the X-ray diffraction and the Raman spectra reveal the good crystallization of LiFePO4 and the presence of amorphous carbon. The as-prepared electrode exhibits an excellent cycle stability, which works quite good even after 2000 cycles. Thereby, we suggested that the as-prepared binder-free thin-film electrode can be potentially applied in the field of all-solid-state, flexible, and micro Li-ion batteries.

References

References
1.
Zhou
,
Y.-N.
,
Xue
,
M.-Z.
, and
Fu
,
Z.-W.
,
2013
, “
Nanostructured Thin Film Electrodes for Lithium Storage and All-Solid-State Thin-Film Lithium Batteries
,”
J. Power Sources
,
234
(
15
), pp.
310
332
. 10.1016/j.jpowsour.2013.01.183
2.
Bates
,
J. B.
,
Dudney
,
N. J.
,
Neudecker
,
B.
,
Ueda
,
A.
, and
Evans
,
C. D.
,
2000
, “
Thin-Film Lithium and Lithium-Ion Batteries
,”
Solid State Ionics
,
135
(
1
), pp.
33
45
. 10.1016/S0167-2738(00)00327-1
3.
Lee
,
S. W.
,
Gallant
,
B. M.
,
Byon
,
H. R.
,
Hammond
,
P. T.
, and
Shao-Horn
,
Y.
,
2011
, “
Nanostructured Carbon-Based Electrodes: Bridging the Gap Between Thin-Film Lithium-Ion Batteries and Electrochemical Capacitors
,”
Energy Environ. Sci.
,
4
(
6
), p.
1972
. 10.1039/c0ee00642d
4.
Shah
,
A.
,
Torres
,
P.
,
Tscharner
,
R.
,
Wyrsch
,
N.
, and
Keppner
,
H.
,
1999
, “
Photovoltaic Technology: The Case for Thin-Film Solar Cells
,”
Science
,
285
(
5428
), pp.
692
698
. 10.1126/science.285.5428.692
5.
Wilson
,
M. S.
, and
Gottesfeld
,
S.
,
1992
, “
Thin-Film Catalyst Layers for Polymer Electrolyte Fuel Cell Electrodes
,”
J. Appl. Electrochem.
,
22
(
1
), pp.
1
7
. 10.1007/BF01093004
6.
Cano
,
Z. P.
,
Banham
,
D.
,
Ye
,
S.
,
Hintennach
,
A.
,
Lu
,
J.
,
Fowler
,
M.
, and
Chen
,
Z.
,
2018
, “
Batteries and Fuel Cells for Emerging Electric Vehicle Markets
,”
Nat. Energy
,
3
(
4
), pp.
279
289
. 10.1038/s41560-018-0108-1
7.
Yu
,
M.
, and
Feng
,
X.
,
2019
, “
Thin-Film Electrode-Based Supercapacitors
,”
Joule
,
3
(
2
), pp.
338
360
. 10.1016/j.joule.2018.12.012
8.
Choi
,
K. M.
,
Jeong
,
H. M.
,
Park
,
J. H.
,
Zhang
,
Y.-B.
,
Kang
,
J. K.
, and
Yaghi
,
O. M.
,
2014
, “
Supercapacitors of Nanocrystalline Metal–Organic Frameworks
,”
ACS Nano
,
8
(
7
), pp.
7451
7457
. 10.1021/nn5027092
9.
DeBlase
,
C. R.
,
Hernández-Burgos
,
K.
,
Silberstein
,
K. E.
,
Rodríguez-Calero
,
G. G.
,
Bisbey
,
R. P.
,
Abruña
,
H. D.
, and
Dichtel
,
W. R.
,
2015
, “
Rapid and Efficient Redox Processes Within 2D Covalent Organic Framework Thin Films
,”
ACS Nano
,
9
(
3
), pp.
3178
3183
. 10.1021/acsnano.5b00184
10.
Hong
,
J.
,
Wang
,
C.
,
Dudney
,
N. J.
, and
Lance
,
M. J.
,
2007
, “
Characterization and Performance of LiFePO4 Thin-Film Cathodes Prepared With Radio-Frequency Magnetron-Sputter Deposition
,”
J. Electrochem. Soc.
,
154
(
8
), p.
A805
. 10.1149/1.2746804
11.
Bao
,
Z.
, and
Chen
,
X.
,
2016
, “
Flexible and Stretchable Devices
,”
Adv. Mater.
,
28
(
22
), pp.
4177
4179
. 10.1002/adma.201601422
12.
Kwon
,
T.
,
Ohnishi
,
T.
,
Mitsuishi
,
K.
,
Ozawa
,
T. C.
, and
Takada
,
K.
,
2015
, “
Synthesis of LiCoO2 Epitaxial Thin Films Using a Sol–Gel Method
,”
J. Power Sources
,
274
(
15
), pp.
417
423
. 10.1016/j.jpowsour.2014.10.070
13.
Porthault
,
H.
,
Le Cras
,
F.
, and
Franger
,
S.
,
2010
, “
Synthesis of LiCoO2 Thin Films by Sol/Gel Process
,”
J. Power Sources
,
195
(
19
), pp.
6262
6267
. 10.1016/j.jpowsour.2010.04.058
14.
Haruta
,
M.
,
Shiraki
,
S.
,
Suzuki
,
T.
,
Kumatani
,
A.
,
Ohsawa
,
T.
,
Takagi
,
Y.
,
Shimizu
,
R.
, and
Hitosugi
,
T.
,
2015
, “
Negligible “Negative Space-Charge Layer Effects” at Oxide-Electrolyte/Electrode Interfaces of Thin-Film Batteries
,”
Nano Lett.
,
15
(
3
), pp.
1498
1502
. 10.1021/nl5035896
15.
Reyes Jimenez
,
A.
,
Klopsch
,
R.
,
Wagner
,
R.
,
Rodehorst
,
U. C.
,
Kolek
,
M.
,
Nolle
,
R.
,
Winter
,
M.
, and
Placke
,
T.
,
2017
, “
A Step Toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries
,”
ACS Nano
,
11
(
5
), pp.
4731
4744
. 10.1021/acsnano.7b00922
16.
Yu
,
X.
,
Chen
,
X.
,
Buchholz
,
D. B.
,
Li
,
Q.
,
Wu
,
J.
,
Fenter
,
P. A.
,
Bedzyk
,
M. J.
,
Dravid
,
V. P.
, and
Barnett
,
S. A.
,
2018
, “
Pulsed Laser Deposition and Characterization of Heteroepitaxial LiMn2O4/La0.5Sr0.5CoO3 Bilayer Thin Films as Model Lithium Ion Battery Cathodes
,”
ACS Appl. Nano Mater.
,
1
(
2
), pp.
642
653
. 10.1021/acsanm.7b00133
17.
Lu
,
X.
,
Howard
,
J. W.
,
Chen
,
A.
,
Zhu
,
J.
,
Li
,
S.
,
Wu
,
G.
,
Dowden
,
P.
,
Xu
,
H.
,
Zhao
,
Y.
, and
Jia
,
Q.
,
2016
, “
Antiperovskite Li3OCl Superionic Conductor Films for Solid-State Li-Ion Batteries
,”
Adv. Sci.
,
3
(
3
), p.
1500359
. 10.1002/advs.201500359
18.
Wang
,
X.
, and
Yushin
,
G.
,
2015
, “
Chemical Vapor Deposition and Atomic Layer Deposition for Advanced Lithium Ion Batteries and Supercapacitors
,”
Energy Environ. Sci.
,
8
(
7
), pp.
1889
1904
. 10.1039/C5EE01254F
19.
Kwon
,
G. D.
,
Moyen
,
E.
,
Lee
,
Y. J.
,
Joe
,
J.
, and
Pribat
,
D.
,
2018
, “
Graphene-Coated Aluminum Thin Film Anodes for Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
10
(
35
), pp.
29486
29495
. 10.1021/acsami.8b08358
20.
Jin
,
T.
,
Han
,
Q.
, and
Jiao
,
L.
,
2019
, “
Binder-Free Electrodes for Advanced Sodium-Ion Batteries
,”
Adv. Mater.
,
32
(
3
), p.
1806304
. 10.1002/adma.201806304
21.
Nystrom
,
G.
,
Marais
,
A.
,
Karabulut
,
E.
,
Wagberg
,
L.
,
Cui
,
Y.
, and
Hamedi
,
M. M.
,
2015
, “
Self-Assembled Three-Dimensional and Compressible Interdigitated Thin-Film Supercapacitors and Batteries
,”
Nat. Commun.
,
6
(
1
), p.
7259
. 10.1038/ncomms8259
22.
Tian
,
X.
,
Jin
,
J.
,
Yuan
,
S.
,
Chua
,
C. K.
,
Tor
,
S. B.
, and
Zhou
,
K.
,
2017
, “
Emerging 3D-Printed Electrochemical Energy Storage Devices: A Critical Review
,”
Adv. Energy Mater.
,
7
(
17
), p.
1700127
. 10.1002/aenm.201700127
23.
Fu
,
K.
,
Wang
,
Y.
,
Yan
,
C.
,
Yao
,
Y.
,
Chen
,
Y.
,
Dai
,
J.
,
Lacey
,
S.
,
Wang
,
Y.
,
Wan
,
J.
,
Li
,
T.
,
Wang
,
Z.
,
Xu
,
Y.
, and
Hu
,
L.
,
2016
, “
Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries
,”
Adv. Mater.
,
28
(
13
), pp.
2587
2594
. 10.1002/adma.201505391
24.
Chiu
,
K. F.
, and
Chen
,
P. Y.
,
2008
, “
Structural Evolution and Electrochemical Performance of LiFePO4/C Thin Films Deposited by Ionized Magnetron Sputtering
,”
Surf. Coat. Technol.
,
203
(
5–7
), pp.
872
875
. 10.1016/j.surfcoat.2008.08.010
25.
Chiu
,
K. F.
,
2007
, “
Optimization of Synthesis Process for Carbon-Mixed LiFePO4 Composite Thin-Film Cathodes Deposited by Bias Sputtering
,”
J. Electrochem. Soc.
,
154
(
2
), pp.
A129
A133
. 10.1149/1.2404898
26.
Cho
,
G. B.
,
Song
,
M. G.
,
Bae
,
S. H.
,
Kim
,
J. K.
,
Choi
,
Y. J.
,
Ahn
,
H. J.
,
Ahn
,
J. H.
,
Cho
,
K. K.
, and
Kim
,
K. W.
,
2009
, “
Surface-Modified Si Thin Film Electrode for Li Ion Batteries (LiFePO4/Si) by Cluster-Structured Ni Under Layer
,”
J. Power Sources
,
189
(
1
), pp.
738
742
. 10.1016/j.jpowsour.2008.08.018
27.
Striebel
,
K. A.
,
Deng
,
C. Z.
,
Wen
,
S. J.
, and
Cairns
,
E. J.
,
1996
, “
Electrochemical Behavior of LiMn2O4 and LiCoO2 Thin Films Produced With Pulsed Laser Deposition
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1821
1827
. 10.1149/1.1836910
28.
Xie
,
J.
,
Oudenhoven
,
J. F. M.
,
Harks
,
P. P. R. M. L.
,
Li
,
D. J.
, and
Notten
,
P. H. L.
,
2015
, “
Chemical Vapor Deposition of Lithium Phosphate Thin-Films for 3D All-Solid-State Li-Ion Batteries
,”
J. Electrochem. Soc.
,
162
(
3
), pp.
A249
A254
. 10.1149/2.0091503jes
29.
Mosa
,
J.
,
Aparicio
,
M.
,
Durán
,
A.
,
Laberty-Robert
,
C.
, and
Sanchez
,
C.
,
2014
, “
Nanocrystalline Mesoporous LiFePO4 Thin-Films as Cathodes for Li-Ion Microbatteries
,”
J. Mater. Chem. A
,
2
(
9
), pp.
3038
3046
. 10.1039/c3ta14142j
30.
Zhang
,
F.
,
Wei
,
M.
,
Viswanathan
,
V. V.
,
Swart
,
B.
,
Shao
,
Y. Y.
,
Wu
,
G.
, and
Zhou
,
C.
,
2017
, “
3D Printing Technologies for Electrochemical Energy Storage
,”
Nano Energy
,
40
(
2017
), pp.
418
431
. 10.1016/j.nanoen.2017.08.037
31.
Zhou
,
N.
,
Liu
,
Y.
,
Li
,
J.
,
Uchaker
,
E.
,
Liu
,
S.
,
Huang
,
K.
, and
Cao
,
G.
,
2012
, “
Synthesis and Characterization of High Power LiFePO4/C Nano-Plate Thin Films
,”
J. Power Sources
,
213
(
1
), pp.
100
105
. 10.1016/j.jpowsour.2012.04.022
32.
Liu
,
J.
,
Banis
,
M. N.
,
Sun
,
Q.
,
Lushington
,
A.
,
Li
,
R.
,
Sham
,
T. K.
, and
Sun
,
X.
,
2014
, “
Rational Design of Atomic-Layer-Deposited LiFePO4 as a High-Performance Cathode for Lithium-Ion Batteries
,”
Adv. Mater.
,
26
(
37
), pp.
6472
6477
. 10.1002/adma.201401805
33.
Liu
,
Y.
,
Clark
,
M.
,
Zhang
,
Q.
,
Yu
,
D.
,
Liu
,
D.
,
Liu
,
J.
, and
Cao
,
G.
,
2011
, “
V2O5 Nano-Electrodes With High Power and Energy Densities for Thin Film Li-Ion Batteries
,”
Adv. Energy Mater.
,
1
(
2
), pp.
194
202
. 10.1002/aenm.201000037
34.
Dokko
,
K.
,
Hoshina
,
K.
,
Nakano
,
H.
, and
Kanamura
,
K.
,
2007
, “
Preparation of LiMn2O4 Thin-Film Electrode on Li1+xAlxTi2−x(PO4)3 NASICON-Type Solid Electrolyte
,”
J. Power Sources
,
174
(
2
), pp.
1100
1103
. 10.1016/j.jpowsour.2007.06.137
35.
Yu
,
X.
,
Bates
,
J.
,
Jellison
,
G.
, and
Hart
,
F.
,
1997
, “
A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride
,”
J. Electrochem. Soc.
,
144
(
2
), pp.
524
532
. 10.1149/1.1837443
36.
Abel
,
P. R.
,
Lin
,
Y. M.
,
Celio
,
H.
,
Heller
,
A.
, and
Mullins
,
C. B.
,
2012
, “
Improving the Stability of Nanostructured Silicon Thin Film Lithium-Ion Battery Anodes Through Their Controlled Oxidation
,”
ACS Nano
,
6
(
3
), p.
2506
. 10.1021/nn204896n
37.
Hao
,
X.
, and
Bartlett
,
B. M.
,
2013
, “
Li4Ti5O12 Nanocrystals Synthesized by Carbon Templating From Solution Precursors Yield High Performance Thin Film Li-Ion Battery Electrodes
,”
Adv. Energy Mater.
,
3
(
6
), pp.
753
761
. 10.1002/aenm.201200964
38.
Kyeremateng
,
N. A.
,
Vacandio
,
F.
,
Sougrati
,
M.-T.
,
Martinez
,
H.
,
Jumas
,
J.-C.
,
Knauth
,
P.
, and
Djenizian
,
T.
,
2013
, “
Effect of Sn-Doping on the Electrochemical Behaviour of TiO2 Nanotubes as Potential Negative Electrode Materials for 3D Li-Ion Micro Batteries
,”
J. Power Sources
,
224
(
15
), pp.
269
277
. 10.1016/j.jpowsour.2012.09.104
39.
Guo
,
X.
,
Lan
,
T.
,
Zhang
,
L.
,
Tan
,
J.
,
Feng
,
X.
,
Li
,
D.
, and
Chen
,
Y.
,
2019
, “
A Stable Filamentous Coaxial Microelectrode for Li-Ion Batteries: A Case of Olivine LiFePO4
,”
Chem. Commun.
,
55
(
24
), pp.
3529
3531
. 10.1039/C9CC00526A
40.
Wagemaker
,
M.
,
Ellis
,
B. L.
,
Lutzenkirchen-Hecht
,
D.
,
Mulder
,
F. M.
, and
Nazar
,
L. F.
,
2008
, “
Proof of Supervalent Doping in Olivine LiFePO4
,”
Chem. Mater.
,
20
(
20
), pp.
6313
6315
. 10.1021/cm801781k
41.
Burba
,
C. M.
, and
Frech
,
R.
,
2004
, “
Raman and FTIR Spectroscopic Study of LixFePO4 (0≤x≤1)
,”
J. Electrochem. Soc.
,
151
(
7
), pp.
A1032
A1038
. 10.1149/1.1756885
42.
Guo
,
X.
,
Song
,
B.
,
Yu
,
G.
,
Wu
,
X.
,
Feng
,
X.
,
Li
,
D.
, and
Chen
,
Y.
,
2018
, “
Size-Dependent Memory Effect of the LiFePO4 Electrode in Li-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
10
(
48
), pp.
41407
41414
. 10.1021/acsami.8b15933
43.
Patil
,
V.
,
Oh
,
W.
,
Yoo
,
J. W.
,
Pu
,
L.
,
Park
,
J. H.
,
Yoon
,
W.-S.
, and
Yi
,
G.-R.
,
2019
, “
Carbon-Coated Supraballs of Randomly Packed LiFePO4 Nanoplates for High Rate and Stable Cycling of Li-Ion Batteries
,”
Part. Part. Syst. Charact.
,
36
(
7
), p.
1900149
. 10.1002/ppsc.201900149
44.
Yoo
,
J. W.
,
Zhang
,
K.
,
Patil
,
V.
,
Lee
,
J. T.
,
Jung
,
D. W.
,
Pu
,
L. S.
,
Oh
,
W.
,
Yoon
,
W. S.
,
Park
,
J. H.
, and
Yi
,
G. R.
,
2018
, “
Porous Supraparticles of LIFePO4 Nanorods With Carbon for High Rate Li-Ion Batteries
,”
Mater. Express
,
8
(
4
), pp.
316
324
. 10.1166/mex.2018.1443
You do not currently have access to this content.