Abstract

The analytical transport network (ATN) model for flow through microstructural networks is extended to linearly coupled flows subject to Onsager reciprocity. Electrokinetic flow is used as an example system. Through the extension, we gain an improved understanding of if, and how, morphology and topology influence coupled flow systems differently than un-coupled flows. In Part 1, a channel-scale model is developed to describe electrokinetic flow through a channel of arbitrary morphology. The analytical model agrees well with finite element analysis (FEA), but is significantly less expensive in terms of computational resources, and, furthermore, offers general insight into morphology's additional influence on coupled flows relative to uncoupled flows. In Part 2, we exploit these savings to develop a computationally economical, network-scale model and associated algorithm for its implementation to voxel-based three-dimensional images. Included in the algorithm is a means for rapidly calculating a structure's tortuosity factor. This modeling effort represents an important initial step in extending the ATN approach to coupled flow phenomena relevant to emerging technologies that rely on heterogeneous, hierarchical materials.

References

References
1.
Chiu
,
W. K. S.
,
Virkar
,
A. V.
,
Zhao
,
F.
,
Reifsnider
,
K. L.
,
Nelson
,
G. J.
,
Rabbi
,
F.
, and
Liu
,
Q.
,
2012
, “
HeteroFoaMs: Electrode Modeling in Nanostructured Heterogeneous Materials for Energy Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
1
), p.
011019
. 10.1115/1.4005142
2.
Reifsnider
,
K. L.
,
Chiu
,
W. K.
,
Brinkman
,
K. S.
,
Du
,
Y.
,
Nakajo
,
A.
,
Rabbi
,
F.
, and
Liu
,
Q.
,
2013
, “
Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
F470
F481
. 10.1149/2.012306jes
3.
Schaedler
,
T. A.
, and
Carter
,
W. B.
,
2016
, “
Architected Cellular Materials
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
187
210
. 10.1146/annurev-matsci-070115-031624
4.
Vyatskikh
,
A.
,
Delalande
,
S.
,
Kudo
,
A.
,
Zhang
,
X.
,
Portela
,
C. M.
, and
Greer
,
J. R.
,
2018
, “
Additive Manufacturing of 3D Nano-Architected Metals
,”
Nat. Commun.
,
9
(
1
), p.
593
. 10.1038/s41467-018-03071-9
5.
Lin
,
Y.
,
Fang
,
S.
,
Su
,
D.
,
Brinkman
,
K. S.
, and
Chen
,
F.
,
2015
, “
Enhancing Grain Boundary Ionic Conductivity in Mixed Ionic-Electronic Conductors
,”
Nat. Commun.
,
6
(
6824
), pp.
1
9
. 10.1038/ncomms7824
6.
Zheng
,
X.
,
Smith
,
W.
,
Jackson
,
J.
,
Moran
,
B.
,
Cui
,
H.
,
Chen
,
D.
,
Ye
,
J.
,
Fang
,
N.
,
Rodriguez
,
N.
,
Weisgraber
,
T.
, and
Spadaccini
,
C. M.
,
2016
, “
Multiscale Metallic Metamaterials
,”
Nat. Mater.
,
15
(
10
), pp.
1100
1106
. 10.1038/nmat4694
7.
Yao
,
X.
,
Dong
,
Q.
,
Cheng
,
Q.
, and
Wang
,
D.
,
2016
, “
Why Do Lithium–Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect
,”
Angew. Chemie Int. Ed
,
55
(
38
), pp.
11344
11353
. 10.1002/anie.201601783
8.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
9.
Bae
,
C.-J.
,
Erdonmez
,
C. K.
,
Halloran
,
J. W.
, and
Chiang
,
Y.-M.
,
2013
, “
Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance
,”
Adv. Mater.
,
25
(
9
), pp.
1254
1258
. 10.1002/adma.201204055
10.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
11.
Cocco
,
A. P.
,
Nakajo
,
A.
, and
Chiu
,
W. K. S.
,
2017
, “
Analytical Transport Network Theory to Guide the Design of 3-D Microstructural Networks in Energy Materials: Part 1. Flow Without Reactions
,”
J. Power Sources
,
372
, pp.
297
311
. 10.1016/j.jpowsour.2017.10.061
12.
Cocco
,
A. P.
, and
Chiu
,
W. K. S.
,
2017
, “
Analytical Transport Network Theory to Guide the Design of 3-D Microstructural Networks in Energy Materials: Part 2. Flow with Reactions
,”
J. Power Sources
,
372
,
312
324
. 10.1016/j.jpowsour.2017.10.053
13.
Usseglio-Viretta
,
F. L.
,
Colclasure
,
A.
,
Mistry
,
A. N.
,
Claver
,
K. P. Y.
,
Pouraghajan
,
F.
,
Finegan
,
D. P.
,
Heenan
,
T. M.
,
Abraham
,
D.
,
Mukherjee
,
P. P.
,
Wheeler
,
D.
, and
Shearing
,
P.
,
2018
, “
Resolving the Discrepancy in Tortuosity Factor Estimation for li-ion Battery Electrodes Through Micro-Macro Modeling and Experiment
,”
J. Electrochem. Soc.
,
165
(
14
), pp.
A3403
A3426
. 10.1149/2.0731814jes
14.
de Groot
,
S. R.
, and
Mazur
,
P.
,
1984
,
Non-Equilibrium Thermodynamics
,
Dover Publications, Inc.
,
Mineola, NY
.
15.
Rabinowitz
,
J.
,
Edwards
,
M. A.
,
Whittier
,
E.
,
Jayant
,
K.
, and
Shepard
,
K. L.
,
2019
, “
Nanoscale Fluid Vortices and Nonlinear Electroosmotic Flow Drive Ion Current Rectification in the Presence of Concentration Gradients
,”
J. Phys. Chem. A
,
123
(
38
), pp.
8285
8293
. 10.1021/acs.jpca.9b04075
16.
Gostick
,
J. T.
,
Ioannidis
,
M. A.
,
Fowler
,
M. W.
, and
Pritzker
,
M. D.
,
2007
, “
Pore Network Modeling of Fibrous Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
173
(
1
), pp.
277
290
. 10.1016/j.jpowsour.2007.04.059
17.
Nelson
,
G. J.
,
Nakajo
,
A.
,
Cassenti
,
B. N.
,
DeGostin
,
M. B.
,
Bagshaw
,
K. R.
,
Peracchio
,
A. A.
,
Xiao
,
G.
,
Wang
,
S.
,
Chen
,
F.
, and
Chiu
,
W. K.
,
2014
, “
A Rapid Analytical Assessment Tool for Three Dimensional Electrode Microstructural Networks with Geometric Sensitivity
,”
J. Power Sources
,
246
(
15
), pp.
322
334
. 10.1016/j.jpowsour.2013.07.009
18.
Mistry
,
A.
, and
Mukherjee
,
P. P.
,
2019
, “
Deconstructing Electrode Pore Network to Learn Transport Distortion
,”
Phys. Fluids
,
31
(
12
), p.
122005
. 10.1063/1.5124099
19.
Torquato
,
S.
,
Aug. 2002
, “
Statistical Description of Microstructures
,”
Annu. Rev. Mater. Res
,
32
(
1
), pp.
77
111
. 10.1146/annurev.matsci.32.110101.155324
20.
Berli
,
C. L. A.
,
2007
, “
Theoretical Modelling of Electrokinetic Flow in Microchannel Networks
,”
Colloids Surfaces A Physicochem. Eng. Asp
,
301
(
1–3
), pp.
271
280
. 10.1016/j.colsurfa.2006.12.066
21.
Mortensen
,
N. A.
,
Okkels
,
F.
, and
Bruus
,
H.
,
2004
, “
Reexamination of Hagen–Poiseuille Flow: Shape-Dependence of the Hydraulic Resistance in Microchannels
,”
Phys. Rev. E
,
71
(
5
), p.
057301
. 10.1103/PhysRevE.71.057301
22.
Sisavath
,
S.
,
Jing
,
X.
, and
Zimmerman
,
R. W.
,
2001
, “
Laminar Flow Through Irregularly-Shaped Pores in Sedimentary Rocks
,”
Transport in Porous Media
,
45
, pp.
41
62
. 10.1023/A:1011898612442
23.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
,
2011
, “
Viscous Flow in Variable Cross-Section Microchannels of Arbitrary Shapes
,”
Int. J. Heat Mass Transf
,
54
(
17–18
), pp.
3970
3978
. 10.1016/j.ijheatmasstransfer.2011.04.028
24.
Akbari
,
M.
,
Bahrami
,
M.
, and
Sinton
,
D.
,
2010
, “
Analytical and Experimental Characterization of Flow in Slowly-Varying Cross-section Microchannels
,”
Proceedings of the 8th International Conference on Nanochannels, Microchannels and Minichannels and Third Joint US-European Fluids Engineering Summer Meeting
,
Montreal, Quebec, Canada
,
Aug. 1–5
, pp. 1–10.
25.
Ajdari
,
A.
,
1996
, “
Generation of Transverse Fluid Currents and Forces by an Electric Field: Electro-Osmosis on Charge-Modulated and Undulated Surfaces
,”
Phys. Rev. E—Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top
,
53
(
5
), pp.
4996
5005
. 10.1103/physreve.53.4996
26.
Bautista
,
O.
,
Sánchez
,
S.
,
Arcos
,
J. C.
, and
Méndez
,
F.
,
2013
, “
Lubrication Theory for Electro-Osmotic Flow in a Slit Microchannel with the Phan-Thien and Tanner Model
,”
J. Fluid Mech
,
722
, pp.
496
532
. 10.1017/jfm.2013.107
27.
Bockris
,
J. O.
, and
Reddy
,
A. K. N.
,
1998
,
Modern Electrochemistry 1
, 2nd ed.,
Plenum
,
New York
.
28.
Robinson
,
R. A.
, and
Stokes
,
R. H.
,
2002
,
Electrolyte Solutions
, 2nd ed. Re,
Dover Publications, Inc
,
Mineola, NY
.
29.
Newman
,
J. S.
,
1991
,
Electrochemical Systems
, 2nd ed.,
Prentice-Hall, Inc.
,
Edgewood Cliffs, NJ
.
30.
Wang
,
C. Y.
,
Liu
,
Y. H.
, and
Chang
,
C. C.
,
2008
, “
Analytical Solution of Electro-Osmotic Flow in a Semicircular Microchannel
,”
Phys. Fluids
,
20
(
6
), pp.
063105-1
063105-6
. 10.1063/1.2939399
31.
Zhang
,
Y.
,
Wong
,
T. N.
,
Yang
,
C.
, and
Ooi
,
K. T.
,
2005
, “
Electroosmotic Flow in Irregular Shape Microchannels
,”
Int. J. Eng. Sci
,
43
(
19–20
), pp.
1450
1463
. 10.1016/j.ijengsci.2005.05.017
32.
Mondal
,
M.
,
Misra
,
R. P.
, and
De
,
S.
,
2014
, “
Combined Electroosmotic and Pressure Driven Flow in a Microchannel at High Zeta Potential and Overlapping Electrical Double Layer
,”
Int. J. Therm. Sci
,
86
, pp.
48
59
. 10.1016/j.ijthermalsci.2014.06.029
33.
Cervera
,
J.
,
García-Morales
,
V.
, and
Pellicer
,
J.
,
2003
, “
Ion Size Effects on the Electrokinetic Flow in Nanoporous Membranes Caused by Concentration Gradients
,”
J. Phys. Chem. B
,
107
(
33
), pp.
8300
8309
. 10.1021/jp027187w
34.
Bard
,
A. J.
, and
Faulkner
,
L. R.
,
2001
,
Electrochemical Methods: Fundamentals and Applications
, 2nd ed,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
35.
Atkins
,
P.
, and
de Paula
,
J.
,
2013
,
Elements of Physical Chemistry
, 6th ed.,
Oxford University Press
,
Oxford, UK
.
36.
Tjaden
,
B.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2018
, “
Tortuosity in Electrochemical Devices: A Review of Calculation Approaches
,”
Int. Mater. Rev.
,
63
(
2
), pp.
47
67
. 10.1080/09506608.2016.1249995
37.
Cocco
,
A. P.
, and
Grew
,
K. N.
,
2019
, “
Analytical Transport Network Theory for Coupled Flows: Part 2, Network-Scale Modeling of Electrokinetic Flow
”.
You do not currently have access to this content.