Abstract

The analytical transport network (ATN) model was developed to study transport through heterogeneous and hierarchical microstructural networks. Here, ATN is extended to electrokinetic flow, a linear, coupled flow that satisfies Onsager’s reciprocity relations. In Part 1, a channel-scale model was developed to describe electrokinetic flow through a channel of arbitrary morphology. In Part 2, we exploit the computational economy of the channel-scale model to develop an efficient network-scale model of electrokinetic flow in large, geometrically complex material structures. The corresponding algorithm for applying the theory to voxel-based, three-dimensional (3D) images is automated and computationally efficient. In addition, it provides a means for rapidly obtaining a structure’s tortuosity factor from a 3D image. We outline the manner in which morphology and topology exerts an additional influence on electrokinetic flow relative to pure conduction and viscous fluid flow. The effort represents an important initial step in extending the ATN approach to a broader range of linear and eventually nonlinear coupled flow phenomena. The extension is relevant to a number of technological fields, including emerging energy conversion and storage technologies.

References

References
1.
Chiu
,
W. K. S.
,
Virkar
,
A. V.
,
Zhao
,
F.
,
Reifsnider
,
K. L.
,
Nelson
,
G. J.
,
Rabbi
,
F.
, and
Liu
,
Q.
, “
HeteroFoaMs: Electrode Modeling in Nanostructured Heterogeneous Materials for Energy Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
1
), p.
011019
. 10.1115/1.4005142
2.
Reifsnider
,
K. L.
,
Chiu
,
W. K. S.
,
Brinkman
,
K. S.
,
Du
,
Y.
,
Nakajo
,
A.
,
Rabbi
,
F.
, and
Liu
,
Q.
,
Mar. 2013
, “
Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
F470
F481
. 10.1149/2.012306jes
3.
Zheng
,
X.
,
Smith
,
W.
,
Jackson
,
J.
,
Moran
,
B.
,
Cui
,
H.
,
Chen
,
D.
,
Ye
,
J.
,
Fang
,
N.
,
Rodriguez
,
N.
,
Weisgraber
,
T.
, and
Spadaccini
,
C. M.
,
2016
, “
Multiscale Metallic Metamaterials
,”
Nat. Mater.
,
15
(
10
), pp.
1100
1106
. 10.1038/nmat4694
4.
Takezawa
,
A.
,
Kobashi
,
M.
, and
Kitamura
,
M.
,
2015
, “
Porous Composite with Negative Thermal Expansion Obtained by Photopolymer Additive Manufacturing
,”
APL Mater.
,
3
(
7
), p.
076103
. 10.1063/1.4926759
5.
Wang
,
K.
,
Chang
,
Y. H.
,
Chen
,
Y. W.
,
Zhang
,
C.
, and
Wang
,
B.
,
2015
, “
Designable Dual-Material Auxetic Metamaterials Using Three-Dimensional Printing
,”
Mater. Des.
,
67
, pp.
159
164
. 10.1016/j.matdes.2014.11.033
6.
Cocco
,
A. P.
,
Nakajo
,
A.
, and
Chiu
,
W. K. S.
,
2017
, “
Analytical Transport Network Theory to Guide the Design of 3-D Microstructural Networks in Energy Materials: Part 1. Flow Without Reactions
,”
J. Power Sources
,
372
, pp.
297
311
. 10.1016/j.jpowsour.2017.10.061
7.
Cocco
,
A. P.
, and
Chiu
,
W. K. S.
,
2017
, “
Analytical Transport Network Theory to Guide the Design of 3-D Microstructural Networks in Energy Materials: Part 2. Flow with Reactions
,”
J. Power Sources
,
372
, pp.
312
324
. 10.1016/j.jpowsour.2017.10.061
8.
Cocco
,
A. P.
, and
Grew
,
K. N.
,
2019
, “
Analytical Transport Network Theory for Coupled Flows: Part 1. Channel-Scale Modeling of Electrokinetic Flow
,
ASME J. Electrochem. Energy Converse. Storage
. https://dx.doi.org/10.1115/1.4047332
9.
Peters
,
P. B.
,
van Roij
,
R.
,
Bazant
,
M. Z.
, and
Biesheuvel
,
P. M.
,
2016
, “
Analysis of Electrolyte Transport Through Charged Nanopores
,”
Phys. Rev. E
,
93
(
5
), p.
053108
. 10.1103/PhysRevE.93.053108
10.
Brunet
,
E.
, and
Ajdari
,
A.
,
2006
, “
Thin Double Layer Approximation to Describe Streaming Current Fields in Complex Geometries: Analytical Frameworks and Applications to Microfluidics
,”
Phys. Rev. E
,
73
(
5
), p.
056306
. 10.1103/PhysRevE.73.056306
11.
Harvie
,
D. J. E.
,
Biscombe
,
C. J. C.
, and
Davidson
,
M. R.
,
2012
, “
Microfluidic Circuit Analysis I: Ion Current Relationships for Thin Slits and Pipes
,”
J. Colloid Interface Sci.
,
365
(
1
), pp.
1
15
. 10.1016/j.jcis.2011.07.076
12.
Alizadeh
,
S.
, and
Mani
,
A.
,
2017
, “
Multiscale Model for Electrokinetic Transport in Networks of Pores, Part I: Model Derivation
,”
Langmuir
,
33
(
25
), pp.
6205
6219
. 10.1021/acs.langmuir.6b03816
13.
Morf
,
W. E.
,
Guenat
,
O. T.
, and
de Rooij
,
N. F.
,
2001
, “
Partial Electroosmotic Pumping in Complex Capillary Systems. Part 1: Principles and General Theoretical Approach
,”
Sensors Actuators, B Chem.
,
72
(
3
), pp.
266
272
. 10.1016/S0925-4005(00)00673-0
14.
Biscombe
,
C. J. C.
,
Davidson
,
M. R.
, and
Harvie
,
D. J. E.
,
2012
, “
Microfluidic Circuit Analysis II: Implications of ion Conservation for Microchannels Connected in Series
,”
J. Colloid Interface Sci.
,
365
(
1
), pp.
16
27
. 10.1016/j.jcis.2011.07.078
15.
Ghosh
,
A.
,
Boyd
,
S.
, and
Saberi
,
A.
,
2008
, “
Minimizing Effective Resistance of a Graph
,”
SIAM Rev.
,
50
(
1
), pp.
37
66
. 10.1137/050645452
16.
Berli
,
C. L. A.
,
2007
, “
Theoretical Modelling of Electrokinetic Flow in Microchannel Networks
,”
Colloids Surfaces A Physicochem. Eng. Asp.
,
301
(
1–3
), pp.
271
280
. 10.1016/j.colsurfa.2006.12.066
17.
Berli
,
C. L. A.
,
2008
, “
Equivalent Circuit Modeling of Electrokinetically Driven Analytical Microsystems
,”
Microfluid. Nanofluidics
,
4
(
5
), pp.
391
399
. 10.1007/s10404-007-0191-2
18.
Bernabé
,
Y.
,
1998
, “
Streaming Potential in Heterogeneous Networks
,”
J. Geophys. Res.
,
103
(
B9
), pp.
20827
20841
. 10.1029/98JB02126
19.
Bianchi
,
F.
,
Ferrigno
,
R.
, and
Girault
,
H. H.
,
2000
, “
Finite Element Simulation of an Electroosmotic-Driven Flow Division at a T-Junction of Microscale Dimensions
,”
Anal. Chem.
,
72
(
9
), pp.
1987
1993
. 10.1021/ac991225z
20.
MacInnes
,
J. M.
,
Du
,
X.
, and
Allen
,
R. W. K.
,
2003
, “
Prediction of Electrokinetic and Pressure Flow in a Microchannel T-Junction
,”
Phys. Fluids
,
15
(
7
), pp.
1992
2005
. 10.1063/1.1580479
21.
Xuan
,
X.
, and
Li
,
D.
,
2004
, “
Analysis of Electrokinetic Flow in Microfluidic Networks
,”
J. Micromech. Microeng.
,
14
(
2
), pp.
290
298
. 10.1088/0960-1317/14/2/018
22.
Hu
,
G.
,
Gao
,
Y.
,
Sherman
,
P. M.
, and
Li
,
D.
,
2005
, “
A Microfluidic Chip for Heterogeneous Immunoassay Using Electrokinetical Control
,”
Microfluid. Nanofluidics
,
1
(
4
), pp.
346
355
. 10.1007/s10404-005-0040-0
23.
Dodge
,
A.
,
Fluri
,
K.
,
Verpoorte
,
E.
, and
de Rooij
,
N. F.
,
2001
, “
Electrokinetically Driven Microfluidic Chips With Surface-Modified Chambers for Heterogeneous Immunoassays
,”
Anal. Chem.
,
73
(
14
), pp.
3400
3409
. 10.1021/ac0015366
24.
Lynch
,
M. E.
,
Ding
,
D.
,
Harris
,
W. M.
,
Lombardo
,
J. J.
,
Nelson
,
G. J.
,
Chiu
,
W. K. S.
, and
Liu
,
M.
,
Jan. 2013
, “
Flexible Multiphysics Simulation of Porous Electrodes: Conformal to 3D Reconstructed Microstructures
,”
Nano Energy
,
2
(
1
), pp.
105
115
. 10.1016/j.nanoen.2012.08.002
25.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1747
1769
. 10.1016/S0022-5096(01)00010-2
26.
Virkutyte
,
J.
,
Sillanpää
,
M.
, and
Latostenmaa
,
P.
,
2002
, “
Electrokinetic Soil Remediation—Critical Overview
,”
Sci. Total Environ.
,
289
(
1–3
), pp.
97
121
. 10.1016/S0048-9697(01)01027-0
27.
Gill
,
R. T.
,
Harbottle
,
M. J.
,
Smith
,
J. W. N.
, and
Thornton
,
S. F.
,
2014
, “
Electrokinetic-Enhanced Bioremediation of Organic Contaminants: A Review of Processes and Environmental Applications
,”
Chemosphere
,
107
, pp.
31
42
. 10.1016/j.chemosphere.2014.03.019
28.
Zhang
,
W.
,
Yao
,
J.
,
Gao
,
Y.
,
Zhang
,
Q.
, and
Sun
,
H.
,
2015
, “
Analysis of Electrokinetic Coupling of Fluid Flow in Porous Media Using a 3-D Pore Network
,”
J. Pet. Sci. Eng.
,
134
, pp.
150
157
. 10.1016/j.petrol.2015.04.013
29.
Jaafar
,
M. Z.
,
Vinogradov
,
J.
, and
Jackson
,
M. D.
,
2009
, “
Measurement of Streaming Potential Coupling Coefficient in Sandstones Saturated With High Salinity NaCl Brine
,”
Geophys. Res. Lett.
,
36
(
21
), p.
L21306
. 10.1029/2009GL040549
30.
Blunt
,
M. J.
,
Jackson
,
M. D.
,
Piri
,
M.
, and
Valvatane
,
P. H.
,
2002
, “
Detailed Physics, Predictive Capabilities and Macroscopic Consequences for Pore-Network Models of Multiphase Flow
,”
Adv. Water Resour.
,
25
(
8–12
), pp.
1069
1089
. 10.1016/S0309-1708(02)00049-0
31.
Blunt
,
M. J.
,
Bijeljic
,
B.
,
Dong
,
H.
,
Gharbi
,
O.
,
Iglauer
,
S.
,
Mostaghimi
,
P.
,
Paluszny
,
A.
, and
Pentland
,
C.
,
2013
, “
Pore-Scale Imaging and Modeling
,”
Adv. Water Resour.
,
51
, pp.
197
216
. 10.1016/j.advwatres.2012.03.003
32.
Miller
,
C. T.
,
Dawson
,
C. N.
,
Farthing
,
M. W.
,
Hou
,
T. Y.
,
Huang
,
J.
,
Kees
,
C. E.
,
Kelley
,
C. T.
, and
Langtangen
,
H. P.
,
2013
, “
Numerical Simulations of Water Resources Problems: Models, Methods, and Trends
,”
Adv. Water Resour.
,
51
, pp.
405
437
. 10.1016/j.advwatres.2012.05.008
33.
DeGostin
,
M. B.
,
Nakajo
,
A.
,
Cassenti
,
B. N.
,
Peracchio
,
A. A.
,
Nelson
,
G. J.
, and
Chiu
,
W. K. S.
,
2015
, “
Geometric Sensitivity of Electrochemical Fin Shape on Three Dimensional Microstructure Network Conductivity Analysis
,”
J. Power Sources
,
291
, pp.
181
194
. 10.1016/j.jpowsour.2015.04.153
34.
Usseglio-Viretta
,
F. L. E.
,
Colclasure
,
A.
,
Mistry
,
A. N.
,
Claver
,
K. P. Y.
,
Pouraghajan
,
F.
,
Finegan
,
D. P.
,
Heenan
,
T. M. M.
,
Abraham
,
D.
,
Mukherjee
,
P. P.
,
Wheeler
,
D.
,
Shearing
,
P.
,
Cooper
,
S. J.
, and
Smith
,
K.
,
2018
, “
Resolving the Discrepancy in Tortuosity Factor Estimation for li-ion Battery Electrodes Through Micro-Macro Modeling and Experiment
,”
J. Electrochem. Soc.
,
165
(
14
), pp.
A3403
A3426
. 10.1149/2.0731814jes
35.
Tjaden
,
B.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2018
, “
Tortuosity in Electrochemical Devices: A Review of Calculation Approaches
,”
Int. Mater. Rev.
,
63
(
2
), pp.
47
67
. 10.1080/09506608.2016.1249995
36.
Cooper
,
S. J.
,
Bertei
,
A.
,
Shearing
,
P. R.
,
Kilner
,
J. A.
, and
Brandon
,
N. P.
,
2016
, “
TauFactor: An Open-Source Application for Calculating Tortuosity Factors From Tomographic Data
,”
SoftwareX
,
5
, pp.
203
210
. 10.1016/j.softx.2016.09.002
38.
Kerschnitzki
,
M.
,
Kollmannsberger
,
P.
,
Burghammer
,
M.
,
Duda
,
G. N.
,
Weinkamer
,
R.
,
Wagermaier
,
W.
, and
Fratzl
,
P.
,
2013
, “
Architecture of the Osteocyte Network Correlates with Bone Material Quality
,”
J. Bone Miner. Res.
,
28
(
8
), pp.
1837
1845
. 10.1002/jbmr.1927
You do not currently have access to this content.