Abstract

Lithium-ion cells normally operate during 0% and 100% state of charge (SOC), therefore thermal runaway can occur at any SOC. In this paper, the 74 Ah lithium-ion pouch cells with the Li(Ni0.8Co0.1Mn0.1)O2 cathode were thermally abused by lateral heating in a semi-open chamber. The differences of thermal runaway behavior were investigated under six SOCs. Characteristic parameters such as triggering time and triggering temperature for thermal runaway show a negative correlation with SOCs, while maximum surface temperature and maximum surface temperature rise rate show a strongly positive correlation. Besides, mass loss ratio increases exponentially with equivalent specific capacity statistically, which implies that the pouch cells with high specific energy density and high capacity may eject more violently. Furthermore, the impact on the surroundings caused by high-temperature ejections was studied, and maximum ambient temperature and maximum ambient pressure in the chamber reached a plateau at middle SOCs. Based on the thermal impact on the surroundings, a theoretical method is proposed to evaluate the deterioration of heat dissipation by venting, and simplified to quantitatively calculate the deterioration under above SOCs. The results can provide guidance for battery safety management strategies and structure design of the battery pack.

References

References
1.
Han
,
X.
,
Languang
,
L.
,
Yuejiu
,
Z.
,
Xuning
,
F.
,
Zhe
,
L.
,
Jianqiu
,
L.
, and
Minggao
,
O. Y.
,
2019
, “
A Review on the Key Issues of the Lithium Ion Battery Degradation Among the Whole Life Cycle
,”
eTransportation
,
1
, p.
100005
. 10.1016/j.etran.2019.100005
2.
Dixon
,
J.
, and
Keith
,
B.
,
2020
, “
Electric Vehicles: Battery Capacity, Charger Power, Access to Charging and the Impacts on Distribution Networks
,”
eTransportation
,
4
, p.
100059
. 10.1016/j.etran.2020.100059
3.
Zhang
,
Z.
,
Weifeng
,
F.
, and
Ruijun
,
M.
,
2019
, “
Brief Review of Batteries for XEV Applications
,”
eTransportation
,
2
, p.
100032
. 10.1016/j.etran.2019.100032
4.
Tanim
,
T. R.
,
Eric
,
J. D.
,
Lee
,
K. W.
,
Chinh
,
D. H.
,
Christopher
,
E. H.
, and
Jon
,
P. C.
,
2020
, “
Advanced Diagnostics to Evaluate Heterogeneity in Lithium-Ion Battery Modules
,”
eTransportation
,
3
, p.
100045
. 10.1016/j.etran.2020.100045
5.
Sun
,
P.
,
Roeland
,
B.
,
Huichang
,
N.
, and
Xinyan
,
H.
,
2020
, “
A Review of Battery Fires in Electric Vehicles
,”
Fire Technol.
,
56
, pp.
1361
1410
. 10.1007/s10694-019-00944-3
6.
Wang
,
Y.
,
Qing
,
G.
,
Tianshi
,
Z.
,
Guohua
,
W.
,
Zhipeng
,
J.
, and
Yunxia
,
L.
,
2017
, “
Advances in Integrated Vehicle Thermal Management and Numerical Simulation
,”
Energies
,
10
(
10
), p.
1636
. 10.3390/en10101636
7.
Wang
,
Y.
,
Qing
,
G.
,
Guohua
,
W.
,
Pengyu
,
L.
,
Mengdi
,
Z.
, and
Wendi
,
B.
,
2018
, “
A Review on Research Status and Key Technologies of Battery Thermal Management and Its Enhanced Safety
,”
Int. J. Energy Res.
,
42
(
13
), pp.
4008
4033
. 10.1002/er.4158
8.
Wen
,
J.
,
Yan
,
Y.
, and
Chunhua
,
C.
,
2012
, “
A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions
,”
Mater. Express
,
2
(
3
), pp.
197
212
. 10.1166/mex.2012.1075
9.
Wang
,
Q.
,
Ping
,
P.
,
Xuejuan
,
Z.
,
Guanquan
,
C.
,
Jinhua
,
S.
, and
Chunhua
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
. 10.1016/j.jpowsour.2012.02.038
10.
Finegan
,
D. P.
,
Mario
,
S.
,
James
,
B. R.
,
Bernhard
,
T.
,
Ian
,
H.
,
Thomas
,
J. M.
,
Jason
,
M.
,
Marco
,
D. M.
,
Gregory
,
J. O.
,
Gareth
,
H.
,
Dan
,
J. L. B.
, and
Paul
,
R. S.
,
2015
, “
In-Operando High-Speed Tomography of Lithium-Ion Batteries During Thermal Runaway
,”
Nat. Commun.
,
6
(
1
). 10.1038/ncomms7924
11.
Feng
,
X.
,
Minggao
,
O. Y.
,
Xiang
,
L.
,
Languang
,
L.
,
Yong
,
X.
, and
Xiangming
,
H.
,
2018
, “
Thermal Runaway Mechanism of Lithium ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
. 10.1016/j.ensm.2017.05.013
12.
Essl
,
C.
,
Andrey
,
W. G.
,
Eva
,
G.
,
Manfred
,
N.
,
Armin
,
Z.
,
Eduard
,
E.
, and
Anton
,
F.
,
2020
, “
Comprehensive Hazard Analysis of Failing Automotive Lithium-Ion Batteries in Overtemperature Experiments
,”
Batteries
,
6
(
2
), p.
30
. 10.3390/batteries6020030
13.
Zhang
,
Y.
,
Hewu
,
W.
,
Weifeng
,
L.
, and
Cheng
,
L.
,
2019
, “
Quantitative Identification of Emissions From Abused Prismatic Ni-Rich Lithium-ion Batteries
,”
eTransportation
,
2
, p.
100031
. 10.1016/j.etran.2019.100031
14.
Finegan
,
D. P.
,
Eric
,
D.
,
Matthew
,
K.
,
Bernhard
,
T.
,
Thomas
,
M. M. H.
,
Rhodri
,
J.
,
Josh
,
J. B.
,
Nghia
,
T. V.
,
Oxana
,
V. M.
,
Michael
,
D.
,
Marco
,
D. M.
,
Alexander
,
R.
,
Gareth
,
H.
,
Dan
,
J. L. B.
, and
Paul
,
R. S.
,
2018
, “
Identifying the Cause of Rupture of Li-Ion Batteries During Thermal Runaway
,”
Adv. Sci.
,
5
(
17003691
). 10.1002/advs.201700369
15.
Zheng
,
S.
,
Li
,
W.
,
Xuning
,
F.
, and
Xiangming
,
H.
,
2018
, “
Probing the Heat Sources During Thermal Runaway Process by Thermal Analysis of Different Battery Chemistries
,”
J. Power Sources
,
378
, pp.
527
536
. 10.1016/j.jpowsour.2017.12.050
16.
Lu
,
T.
,
Chungcheng
,
C.
,
Shenghung
,
W.
,
Kuanchung
,
C.
,
Shinnjou
,
L.
,
Chiyuan
,
W.
, and
Chimin
,
S.
,
2013
, “
Thermal Hazard Evaluations of 18650 Lithium-ion Batteries by an Adiabatic Calorimeter
,”
J. Therm. Anal. Calorim.
,
114
(
3
), pp.
1083
1088
. 10.1007/s10973-013-3137-9
17.
Ren
,
D.
,
Hungjen
,
H.
,
Ruihe
,
L.
,
Xuning
,
F.
,
Dongxu
,
G.
,
Xuebing
,
H.
,
Languang
,
L.
,
Xiangming
,
H.
,
Shang
,
G.
,
Junxian
,
H.
,
Yan
,
L.
,
Yongling
,
W.
, and
Minggao
,
O. Y.
,
2019
, “
A Comparative Investigation of Aging Effects on Thermal Runaway Behavior of Lithium-Ion Batteries
,”
eTransportation
,
2
, p.
100034
. 10.1016/j.etran.2019.100034
18.
Huang
,
P.
,
Qingsong
,
W.
,
Ke
,
L.
,
Ping
,
P.
, and
Jinhua
,
S.
,
2015
, “
The Combustion Behavior of Large Scale Lithium Titanate Battery
,”
Sci. Rep.
,
5
(
1
), p.
7788
. 10.1038/srep07788
19.
Chen
,
M.
,
Dechuang
,
Z.
,
Xiao
,
C.
,
Wenxia
,
Z.
,
Jiahao
,
L.
,
Richard
,
Y.
, and
Jian
,
W.
,
2015
, “
Investigation on the Thermal Hazards of 18650 Lithium Ion Batteries by Fire Calorimeter
,”
J. Therm. Anal. Calorim.
,
122
(
2
), pp.
755
763
. 10.1007/s10973-015-4751-5
20.
Liu
,
J.
,
Zhirong
,
W.
,
Junhui
,
G.
,
Kai
,
L.
,
Hao
,
W.
, and
Linsheng
,
G.
,
2017
, “
Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery
,”
Materials
,
10
(
3
), p.
230
. 10.3390/ma10030230
21.
Geng
,
L.
,
Jue
,
L.
,
David
,
L. W.
,
Yan
,
Q.
,
Wenquan
,
L.
,
Charl
,
J. J.
,
Yaocai
,
B.
, and
Ilias
,
B.
,
2020
, “
Probing Thermal Stability of Li-Ion Battery Ni-Rich Layered Oxide Cathodes by Means of Operando Gas Analysis and Neutron Diffraction
,”
ACS Appl. Energy Mater.
,
3
(
7
), pp.
7058
7065
. 10.1021/acsaem.0c01105
22.
Koch
,
S.
,
Alexander
,
F.
, and
Kai
,
P. B.
,
2018
, “
Comprehensive Gas Analysis on Large Scale Automotive Lithium-ion Cells in Thermal Runaway
,”
J. Power Sources
,
398
, pp.
106
112
. 10.1016/j.jpowsour.2018.07.051
23.
Ribiere
,
P.
,
Sylvie
,
G.
,
Mathieu
,
M.
,
Simeon
,
B.
,
Stephane
,
L.
, and
Guy
,
M.
,
2012
, “
Investigation on the Fire-Induced Hazards of Li-Ion Battery Cells by Fire Calorimetry
,”
Energy Environ. Sci.
5
(
1
), pp.
5271
5280
. 10.1039/c1ee02218k
24.
Chen
,
M.
,
Jiahao
,
L.
,
Yaping
,
H.
,
Richard
,
Y.
, and
Jian
,
W.
,
2017
, “
Study of the Fire Hazards of Lithium-Ion Batteries at Different Pressures
,”
Appl. Therm. Eng.
,
125
, pp.
1061
1074
. 10.1016/j.applthermaleng.2017.06.131
25.
Hsieh
,
T.
,
Yihshing
,
D.
, and
Chenshan
,
K.
,
2014
, “
Evaluation of Thermal Hazard for Commercial 14500 Lithium-ion Batteries
,”
J. Therm. Anal. Calorim.
,
116
(
3
), pp.
1491
1495
. 10.1007/s10973-014-3755-x
26.
Golubkov
,
A. W.
,
David
,
F.
,
Julian
,
W.
,
Helmar
,
W.
,
Christoph
,
S.
,
Gisela
,
F.
,
Gernot
,
V.
,
Alexander
,
T.
, and
Viktor
,
H.
,
2014
, “
Thermal-Runaway Experiments on Consumer Li-Ion Batteries With Metal-Oxide and Olivin-Type Cathodes
,”
RSC Adv
,
4
(
7
), pp.
3633
3642
. 10.1039/C3RA45748F
27.
Golubkov
,
A. W.
,
Sebastian
,
S.
,
René
,
P.
,
Gernot
,
V.
,
Helmar
,
W.
,
Christoph
,
S.
,
Gisela
,
F.
,
Alexander
,
T.
, and
Viktor
,
H.
,
2015
, “
Thermal Runaway of Commercial 18650 Li-Ion Batteries With LFP and NCA Cathodes—Impact of State of Charge and Overcharge
,”
RSC Adv.
,
5
(
7
), pp.
57171
57186
. 10.1039/C5RA05897J
You do not currently have access to this content.