Abstract

Reliability and durability are the main factors that hinder the large-scale commercialization of proton exchange membrane fuel cell (PEMFC). Water management is the key to solve such problems, and water content is the measurement standard of water management. But it is very difficult to measure water content inside the fuel cell directly. Thus, water fault diagnosis is a basic technology to monitor the water content indirectly based on the measurable parameters. In this paper, the water fault diagnosis of the PEMFC system has been summarized in three sections including the theoretical model-based method, knowledge-based method, and signal processing method from practical application, and part of them is from the perspective of vehicle application.

References

1.
Tavakoli
,
B.
, and
Roshandel
,
R.
,
2011
, “
The Effect of Fuel Cell Operational Conditions on the Water Content Distribution in the Polymer Electrolyte Membrane
,”
Renew. Energy
,
36
(
12
), pp.
3319
3331
.
2.
Yang
,
X. G.
,
Ye
,
Q.
, and
Cheng
,
P.
,
2012
, “
In-Plane Transport Effects on Hydrogen Depletion and Carbon Corrosion Induced by Anode Flooding in Proton Exchange Membrane Fuel Cells
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4754
4765
.
3.
Pei
,
P.
,
Li
,
Y.
,
Xu
,
H.
, and
Wu
,
Z.
,
2016
, “
A Review on Water Fault Diagnosis of PEMFC Associated With the Pressure Drop
,”
Appl. Energy
,
173
, pp.
366
385
.
4.
Kandlikar
,
S. G.
,
Garofalo
,
M. L.
, and
Lu
,
Z.
,
2015
, “
Water Management in a PEMFC: Water Transport Mechanism and Material Degradation in Gas Diffusion Layers
,”
Fuel Cells
,
16
(
6
), pp.
814
823
.
5.
Riascos
,
L. A. M.
,
2008
, “
Relative Humidity Control in Polymer Electrolyte Membrane Fuel Cells Without Extra Humidification
,”
J. Power Sources
,
184
(
1
), pp.
204
211
.
6.
Voss
,
H. H.
,
Wilkinson
,
D. P.
,
Pickup
,
P. G.
,
Johnson
,
M. C.
, and
Basura
,
V.
,
1995
, “
Anode Water Removal: A Water Management and Diagnostic Technique for Solid Polymer Fuel Cells
,”
Electrochim. Acta
,
40
(
3
), pp.
321
328
.
7.
Natarajan
,
D.
, and
Nguyen
,
T. V.
,
2005
, “
Current Distribution in PEM Fuel Cells. Part 1: Oxygen and Fuel Flow Rate Effects
,”
AIChE J.
,
51
(
9
), pp.
2587
2598
.
8.
Amamou
,
A. A.
,
Kelouwani
,
S.
,
Boulon
,
L.
, and
Agbossou
,
K. A.
,
2017
, “
Comprehensive Review of Solutions and Strategies for Cold Start of Automotive Proton Exchange Membrane Fuel Cells
,”
IEEE Access
,
4
, pp.
4989
5002
.
9.
Huo
,
S.
,
Cooper
,
N. J.
,
Smith
,
T. L.
,
Park
,
J. W.
, and
Jiao
,
K.
,
2017
, “
Experimental Investigation on PEM Fuel Cell Cold Start Behavior Containing Porous Metal Foam as Cathode Flow Distributor
,”
Appl. Energy
,
203
, pp.
101
114
.
10.
Zhu
,
W. H.
,
Payne
,
R. U.
, and
Tatarchuk
,
B. J.
,
2007
, “
PEM Stack Test and Analysis in a Power System at Operational Load Via AC Impedance
,”
J. Power Sources
,
168
(
1
), pp.
211
217
.
11.
Romero-Castañón
,
T.
,
Arriaga
,
L. G.
, and
Cano-Castillo
,
U.
,
2003
, “
Impedance Spectroscopy as a Tool in the Evaluation of MEA’s
,”
J. Power Sources
,
118
(
1–2
), pp.
179
182
.
12.
Xie
,
Z.
, and
Holdcroft
,
S.
,
2004
, “
Polarization-Dependent Mass Transport Parameters for orr in Perfluorosulfonic Acid Ionomer Membranes: An EIS Study Using Microelectrodes
,”
J. Electroanal. Chem.
,
568
, pp.
247
260
.
13.
Springer
,
T. E.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.
14.
Pukrushpan
,
J. T.
,
2004
, “
Control of Fuel Cell Power Systems
,”
Springer
,
110–116
(
3
), pp.
2647
2654
.
15.
Setzler
,
B. P.
, and
Fuller
,
T. F.
,
2015
, “
A Physics-Based Impedance Model of Proton Exchange Membrane Fuel Cells Exhibiting Low-Frequency Inductive Loops
,”
J. Electrochem. Soc.
,
162
(
6
), pp.
F519
F530
.
16.
Russo
,
L.
,
Sorrentino
,
M.
,
Polverino
,
P.
, and
Pianese
,
C.
,
2017
, “
Application of Buckingham π Theorem for Scaling-Up Oriented Fast Modelling of Proton Exchange Membrane Fuel Cell Impedance
,”
J. Power Sources
,
353
, pp.
277
286
.
17.
Kulikovsky
,
A. A.
,
2016
, “
A Simple Physics-Based Equation for Low-Current Impedance of a PEM Fuel Cell Cathode
,”
Electrochim. Acta
,
196
, pp.
231
235
.
18.
Kulikovsky
,
A. A.
,
2017
, “
Analytical Physics-Based Impedance of the Cathode Catalyst Layer in a PEM Fuel Cell at Typical Working Currents
,”
Electrochim. Acta
,
225
, pp.
559
565
.
19.
Obermaier
,
M.
,
Bandarenka
,
A. S.
, and
Lohri-Tymozhynsky
,
C.
,
2018
, “
A Comprehensive Physical Impedance Model of Polymer Electrolyte Fuel Cell Cathodes in Oxygen-Free Atmosphere
,”
Sci. Rep.
,
8
(
1
), p.
4933
.
20.
Giner-Sanz
,
J. J.
,
Ortega
,
E. M.
, and
Pérez-Herranz
,
V.
,
2016
, “
Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion
,”
Fuel Cells
,
16
(
4
), pp.
469
479
.
21.
Yuan
,
X.
,
Sun
,
J. C.
,
Blanco
,
M.
,
Wang
,
H.
,
Zhang
,
J.
, and
Wilkinson
,
D. P.
,
2006
, “
AC Impedance Diagnosis of a 500W PEM Fuel Cell Stack
,”
J. Power Sources
,
161
(
2
), pp.
920
928
.
22.
Yuan
,
X.
,
Sun
,
J. C.
,
Wang
,
H.
, and
Zhang
,
J.
,
2006
, “
AC Impedance Diagnosis of a 500W PEM Fuel Cell Stack
,”
J. Power Sources
,
161
(
2
), pp.
929
937
.
23.
Saleh
,
M. M.
,
Okajima
,
T.
,
Hayase
,
M.
,
Kitamura
,
F.
, and
Ohsaka
,
T.
,
2007
, “
Exploring the Effects of Symmetrical and Asymmetrical Relative Humidity on the Performance of H2/Air PEM Fuel Cell at Different Temperatures
,”
J. Power Sources
,
164
(
2
), pp.
503
509
.
24.
Salva
,
J. A.
,
Iranzo
,
A.
,
Rosa
,
F.
,
Tapia
,
E.
,
Lopez
,
E.
, and
Isorna
,
F.
,
2016
, “
Optimization of a PEM Fuel Cell Operating Conditions: Obtaining the Maximum Performance Polarization Curve
,”
Int. J. Hydrogen Energy
,
41
(
43
), pp.
19713
19723
.
25.
Salva
,
J. A.
,
Iranzo
,
A.
,
Rosa
,
F.
, and
Tapia
,
E.
,
2016
, “
Validation of Cell Voltage and Water Content in a PEM (Polymer Electrolyte Membrane) Fuel Cell Model Using Neutron Imaging for Different Operating Conditions
,”
Energy
,
101
, pp.
100
112
.
26.
Labach
,
I.
,
Rallières
,
O.
, and
Turpin
,
C.
,
2017
, “
Steady-State Semi-Empirical Model of a Single Proton Exchange Membrane Fuel Cell (PEMFC) at Varying Operating Conditions
,”
Fuel Cells
,
17
(
2
), pp.
166
177
.
27.
Vasilyev
,
A.
,
Andrews
,
J.
,
Jackson
,
L. M.
,
Dunnett
,
S. J.
, and
Davies
,
B.
,
2017
, “
Component-Based Modelling of PEM Fuel Cells With Bond Graphs
,”
Int. J. Hydrogen Energy
,
42
(
49
), pp.
29406
29421
.
28.
Mzoughi
,
D.
,
Allagui
,
H.
,
Bouaicha
,
A.
, and
Mami
,
A.
,
2015
, “
Modeling and Testing of a 1.2-kW Nexa Fuel Cell Using Bond Graph Methodology
,”
IEEJ Trans. Electr. Electron. Eng.
,
10
(
5
), pp.
527
538
.
29.
Giner-Sanz
,
J. J.
,
Ortega
,
E. M.
, and
Pérez-Herranz
,
V.
,
2015
, “
Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model
,”
Fuel Cells
,
15
(
3
), pp.
479
493
.
30.
Giner-Sanz
,
J. J.
,
Ortega
,
E. M.
, and
Pérez-Herranz
,
V.
,
2018
, “
Statistical Analysis of the Effect of Temperature and Inlet Humidities on the Parameters of a Semiempirical Model of the Internal Resistance of a Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
,
381
, pp.
84
93
.
31.
Giner-Sanz
,
J. J.
,
Ortega
,
E. M.
, and
Pérez-Herranz
,
V.
,
2015
, “
Total Harmonic Distortion Based Method for Linearity Assessment in Electrochemical Systems in the Context of EIS
,”
Electrochim. Acta
,
186
, pp.
598
612
.
32.
Giner-Sanz
,
J. J.
,
Ortega
,
E. M.
, and
Pérez-Herranz
,
V.
,
2016
, “
Harmonic Analysis Based Method for Linearity Assessment and Noise Quantification in Electrochemical Impedance Spectroscopy Measurements: Theoretical Formulation and Experimental Validation for Tafelian Systems
,”
Electrochim. Acta
,
211
, pp.
1076
1091
.
33.
Giner-Sanz
,
J. J.
,
Ortega
,
E. M.
, and
Pérez-Herranz
,
V.
,
2017
, “
Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements
,”
J. Electrochem. Soc.
,
164
(
13
), pp.
H918
H924
.
34.
Giner-Sanz
,
J. J.
,
Ortega
,
E. M.
, and
Pérez-Herranz
,
V.
,
2015
, “
Monte Carlo Based Quantitative Kramers–Kronig Test for PEMFC Impedance Spectrum Validation
,”
Int. J. Hydrogen Energy
,
40
(
34
), pp.
11279
11293
.
35.
Giner-Sanz
,
J. J.
,
Ortega
,
E. M.
, and
Pérez-Herranz
,
V.
,
2016
, “
Application of a Monte Carlo Based Quantitative Kramers–Kronig Test for Linearity Assessment of EIS Measurements
,”
Electrochim. Acta
,
209
, pp.
254
268
.
36.
Saadi
,
A.
,
Becherif
,
M.
,
Aboubou
,
A.
, and
Ayad
,
M. Y.
,
2013
, “
Comparison of Proton Exchange Membrane Fuel Cell Static Models
,”
Renew. Energy
,
56
, pp.
64
71
.
37.
Saadi
,
A.
,
Becherif
,
M.
,
Hissel
,
D.
, and
Ramadan
,
H. S.
,
2017
, “
Dynamic Modeling and Experimental Analysis of PEMFCs: A Comparative Study
,”
Int. J. Hydrogen Energy
,
42
(
2
), pp.
1544
1557
.
38.
Becherif
,
M.
,
Hissel
,
D.
,
Gaagat
,
S.
, and
Wack
,
M.
,
2010
, “
Three Order State Space Modeling of Proton Exchange Membrane Fuel Cell With Energy Function Definition
,”
J. Power Sources
,
195
(
19
), pp.
6645
6651
.
39.
Becherif
,
M.
,
Hissel
,
D.
,
Gaagat
,
S.
, and
Wack
,
M.
,
2011
, “
Electrical Equivalent Model of a Proton Exchange Membrane Fuel Cell With Experimental Validation
,”
Renew. Energy
,
36
(
10
), pp.
2582
2588
.
40.
Hussaini
,
I. S.
, and
Wang
,
C.-Y.
,
2009
, “
Visualization and Quantification of Cathode Channel Flooding in PEM Fuel Cells
,”
J. Power Sources
,
187
(
2
), pp.
444
451
.
41.
Pei
,
P.
,
Ouyang
,
M.
,
Feng
,
W.
,
Lu
,
L.
,
Huang
,
H.
, and
Zhang
,
J.
,
2006
, “
Hydrogen Pressure Drop Characteristics in a Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
31
(
3
), pp.
371
377
.
42.
Song
,
M.
,
Pei
,
P.
,
Zha
,
H.
, and
Xu
,
H.
,
2014
, “
Water Management of Proton Exchange Membrane Fuel Cell Based on Control of Hydrogen Pressure Drop
,”
J. Power Sources
,
267
, pp.
655
663
.
43.
Song
,
M.
,
Pei
,
P.
,
Zeng
,
X.
, and
Zha
,
H.
,
2014
, “
Flooding Prediction Based on Characteristics of Hydrogen Pressure Drop in PEMFC
,”
Trans. Chin. Soc. Agric. Mach.
,
45
, pp.
340
346
.
44.
Li
,
Y.
,
Pei
,
P.
,
Wu
,
Z.
,
Xu
,
H.
,
Chen
,
D.
, and
Huang
,
S.
,
2017
, “
Novel Approach to Determine Cathode Two-Phase-Flow Pressure Drop of Proton Exchange Membrane Fuel Cell and Its Application on Water Management
,”
Appl. Energy
,
190
, pp.
713
724
.
45.
Li
,
Y.
,
Pei
,
P.
,
Ziyao
,
W. U.
, and
Jia
,
X.
,
2018
, “
Verification of a Cathode Pressure Drop Model for Single Phase Flow in a Proton Exchange Membrane Fuel Cell
,”
J. Tsinghua Univ.
,
58
(
1
), pp.
43
49
.
46.
Esmaili
,
Q.
,
Nimvari
,
M. E.
,
Jouybari
,
N. F.
, and
Chen
,
Y.
,
2020
, “
Model Based Water Management Diagnosis in Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
45
(
31
), pp.
15618
15629
.
47.
Hissel
,
D.
,
Péra
,
M. C.
, and
Kauffmann
,
J. M.
,
2004
, “
Diagnosis of Automotive Fuel Cell Power Generators
,”
J. Power Sources
,
128
(
2
), pp.
239
246
.
48.
Zheng
,
Z.
,
Péra
,
M.-C.
,
Hissel
,
D.
,
Becherif
,
M.
,
Agbli
,
K.-S.
, and
Li
,
Y.
,
2014
, “
A Double-Fuzzy Diagnostic Methodology Dedicated to Online Fault Diagnosis of Proton Exchange Membrane Fuel Cell Stacks
,”
J. Power Sources
,
271
, pp.
570
581
.
49.
Petrone
,
R.
,
Pahon
,
E.
,
Harel
,
F.
,
Jemei
,
S.
,
Chamagne
,
D.
,
Hissel
,
D.
, and
Pera
,
M. C.
,
2017
, “
Data-Driven Multi-Fault Approach for H2/O2 PEM Fuel Cell Diagnosis
,”
Proceedings of the 2017 IEEE Vehicle Power & Propulsion Conference
,
Belfort, France
,
Dec. 11–14
.
50.
Li
,
Z.
,
Outbib
,
R.
,
Giurgea
,
S.
,
Hissel
,
D.
, and
Li
,
Y.
,
2015
, “
Fault Detection and Isolation for Polymer Electrolyte Membrane Fuel Cell Systems by Analyzing Cell Voltage Generated Space
,”
Appl. Energy
,
148
, pp.
260
272
.
51.
Liu
,
J.
,
Li
,
Q.
,
Chen
,
W.
, and
Cao
,
T.
,
2018
, “
A Discrete Hidden Markov Model Fault Diagnosis Strategy Based on K-Means Clustering Dedicated to PEM Fuel Cell Systems of Tramways
,”
Int. J. Hydrogen Energy
,
43
(
27
), pp.
12428
12441
.
52.
Quan
,
R.
,
Tan
,
B.
, and
Quan
,
S.
,
2010
, “
Study on Fault Tree Analysis of Fuel Cell Stack Malfunction
,” 2010,
International Conference on Measuring Technology and Mechatronics Automation
,
Changsha, China
,
Mar. 13–14
, pp.
579
582
.
53.
Liu
,
Z.
,
Pei
,
M.
,
He
,
Q.
,
Wu
,
Q.
,
Jackson
,
L.
, and
Mao
,
L.
,
2021
, “
A Novel Method for Polymer Electrolyte Membrane Fuel Cell Fault Diagnosis Using 2D Data
,”
J. Power Sources
,
482
, p.
228894
.
54.
Zhou
,
S.
, and
Dhupia
,
J. S.
,
2020
, “
Online Adaptive Water Management Fault Diagnosis of PEMFC Based on Orthogonal Linear Discriminant Analysis and Relevance Vector Machine
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
7005
7014
.
55.
Wu
,
X.
, and
Zhou
,
B.
,
2016
, “
Fault Tolerance Control for Proton Exchange Membrane Fuel Cell Systems
,”
J. Power Sources
,
324
, pp.
804
829
.
56.
Steiner
,
N. Y.
,
Candusso
,
D.
,
Hissel
,
D.
, and
Moçoteguy
,
P.
,
2010
, “
Model-Based Diagnosis for Proton Exchange Membrane Fuel Cells
,”
Math. Comput. Simul.
,
81
(
2
), pp.
158
170
.
57.
Mehrpooya
,
M.
,
Ghorbani
,
B.
,
Jafari
,
B.
,
Aghbashlo
,
M.
, and
Pouriman
,
M.
,
2018
, “
Modeling of a Single Cell Micro Proton Exchange Membrane Fuel Cell by a New Hybrid Neural Network Method
,”
Therm. Sci. Eng. Prog.
,
7
, pp.
8
19
.
58.
Nitsche
,
C.
,
Schroedl
,
S.
, and
Weiss
,
W.
,
2004
, “
Onboard Diagnostics Concept for Fuel Cell Vehicles Using Adaptive Modelling
,”
Proceedings of the 2004 IEEE Intelligent Vehicles Symposium
,
Parma, Italy
,
June 14–17
.
59.
Laribi
,
S.
,
Mammar
,
K.
,
Hamouda
,
M.
, and
Sahli
,
Y.
,
2016
, “
Impedance Model for Diagnosis of Water Management in Fuel Cells Using Artificial Neural Networks Methodology
,”
Int. J. Hydrogen Energy
,
41
(
38
), pp.
17093
17101
.
60.
Laribi
,
S.
,
Mammar
,
K.
,
Sahli
,
Y.
, and
Koussa
,
K.
,
2018
, “
Air Supply Temperature Impact on the PEMFC Impedance
,”
J. Energy Storage
,
17
, pp.
327
335
.
61.
Kheirandish
,
A.
,
Shafiabady
,
N.
,
Dahari
,
M.
,
Kazemi
,
M. S.
, and
Isa
,
D.
,
2016
, “
Modeling of Commercial Proton Exchange Membrane Fuel Cell Using Support Vector Machine
,”
Int. J. Hydrogen Energy
,
41
(
26
), pp.
11351
11358
.
62.
Han
,
I. S.
, and
Chung
,
C. B.
,
2016
, “
Performance Prediction and Analysis of a PEM Fuel Cell Operating on Pure Oxygen Using Data-Driven Models: A Comparison of Artificial Neural Network and Support Vector Machine
,”
Int. J. Hydrogen Energy
,
41
(
24
), pp.
10202
10211
.
63.
Zhang
,
L.
,
Bi
,
H. T.
,
Wilkinson
,
D. P.
,
Stumper
,
J.
, and
Wang
,
H.
,
2008
, “
Gas–Liquid Two-Phase Flow Patterns in Parallel Channels for Fuel Cells
,”
J. Power Sources
,
183
(
2
), pp.
643
650
.
64.
Banerjee
,
R.
,
Howe
,
D.
,
Mejia
,
V.
, and
Kandlikar
,
S. G.
,
2014
, “
Experimental Validation of Two-Phase Pressure Drop Multiplier as a Diagnostic Tool for Characterizing PEM Fuel Cell Performance
,”
Int. J. Hydrogen Energy
,
39
(
31
), pp.
17791
17801
.
65.
Kandlikar
,
S. G.
,
See
,
E. J.
,
Koz
,
M.
,
Gopalan
,
P.
, and
Banerjee
,
R.
,
2014
, “
Two-Phase Flow in GDL and Reactant Channels of a Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
39
(
12
), pp.
6620
6636
.
66.
Chen
,
J.
,
2010
, “
Dominant Frequency of Pressure Drop Signal as a Novel Diagnostic Tool for the Water Removal in Proton Exchange Membrane Fuel Cell Flow Channel
,”
J. Power Sources
,
195
(
4
), pp.
1177
1181
.
67.
Bazylak
,
A.
,
Sinton
,
D.
, and
Djilali
,
N.
,
2008
, “
Dynamic Water Transport and Droplet Emergence in PEMFC Gas Diffusion Layers
,”
J. Power Sources
,
176
(
1
), pp.
240
246
.
68.
Gao
,
B.
,
Steenhuis
,
T. S.
,
Zevi
,
Y.
,
Parlange
,
J. Y.
,
Carter
,
R. N.
, and
Trabold
,
T. A.
,
2009
, “
Visualization of Unstable Water Flow in a Fuel Cell Gas Diffusion Layer
,”
J. Power Sources
,
190
(
2
), pp.
493
498
.
69.
Dotelli
,
G.
,
Ferrero
,
R.
,
Stampino
,
P. G.
,
Latorrata
,
S.
, and
Toscani
,
S.
,
2016
, “
Combining Electrical and Pressure Measurements for Early Flooding Detection in a PEM Fuel Cell
,”
J. IEEE Trans. Instrum. Meas.
,
65
(
5
), pp.
1007
1014
.
70.
Pahon
,
E.
,
Yousfi-Steiner
,
N.
,
Jemei
,
S.
,
Hissel
,
D.
, and
Moçoteguy
,
P.
,
2016
, “
A Signal-Based Method for Fast PEMFC Diagnosis
,”
Appl. Energy
,
165
, pp.
748
758
.
71.
Pahon
,
E.
,
Yousfi-Steiner
,
N.
,
Jemei
,
S.
,
Hissel
,
D.
, and
Moçotéguy
,
P.
,
2017
, “
A Non-Intrusive Signal-Based Method for a Proton Exchange Membrane Fuel Cell Fault Diagnosis
,”
Fuel Cells
,
17
(
2
), pp.
238
246
.
72.
Battrell
,
L.
,
Trunkle
,
A.
,
Eggleton
,
E.
,
Zhang
,
L.
, and
Anderson
,
R.
,
2017
, “
Quantifying Cathode Water Transport Via Anode Relative Humidity Measurements in a Polymer Electrolyte Membrane Fuel Cell
,”
Energies
,
10
(
8
), p.
1222
.
73.
Anderson
,
R.
,
Blanco
,
M.
,
Bi
,
X.
, and
Wilkinson
,
D. P.
,
2012
, “
Anode Water Removal and Cathode Gas Diffusion Layer Flooding in a Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
16093
16103
.
74.
Battrell
,
L.
,
Trunkle
,
A.
,
Eggleton
,
E.
,
Zhang
,
L.
, and
Anderson
,
R.
,
2016
, “
Investigation of Water Transport Within a Proton Exchange Membrane Fuel Cell by Diffusion Layer Saturation Analysis
,”
Proceedings of the ASME 2016 10th International Conference on Energy Sustainability
,
Washington, DC
,
June 26–30
, pp.
10
14
.
75.
Legros
,
B.
,
Thivel
,
P. X.
,
Bultel
,
Y.
, and
Nogueira
,
R. P.
,
2011
, “
First Results on PEMFC Diagnosis by Electrochemical Noise
,”
Electrochem. Commun.
,
13
(
12
), pp.
1514
1516
.
76.
Denisov
,
E. S.
,
Evdokimov
,
Y. K.
,
Martemianov
,
S.
,
Thomas
,
A.
, and
Adiutantov
,
N.
,
2017
, “
Electrochemical Noise as a Diagnostic Tool for PEMFC
,”
Fuel Cells
,
17
(
2
), pp.
225
237
.
77.
Nigmatullin
,
R. R.
,
Martemianov
,
S.
,
Evdokimov
,
Y. K.
,
Denisov
,
E.
,
Thomas
,
A.
, and
Adiutantov
,
N.
,
2016
, “
New Approach for PEMFC Diagnostics Based on Quantitative Description of Quasi-Periodic Oscillations
,”
Int. J. Hydrogen Energy
,
41
(
29
), pp.
12582
12590
.
78.
Damour
,
C.
,
Benne
,
M.
,
Grondin-Perez
,
B.
,
Bessafi
,
M.
,
Hissel
,
D.
, and
Chabriat
,
J.-P.
,
2015
, “
Polymer Electrolyte Membrane Fuel Cell Fault Diagnosis Based on Empirical Mode Decomposition
,”
J. Power Sources
,
299
, pp.
596
603
.
79.
Rubio
,
M. A.
,
Bethune
,
K.
,
Urquia
,
A.
, and
St-Pierre
,
J.
,
2016
, “
Proton Exchange Membrane Fuel Cell Failure Mode Early Diagnosis With Wavelet Analysis of Electrochemical Noise
,”
Int. J. Hydrogen Energy
,
41
(
33
), pp.
14991
15001
.
80.
Ma
,
T.
,
Lin
,
W.
,
Yang
,
Y.
,
Wang
,
K.
, and
Jia
,
W.
,
2020
, “
Water Content Diagnosis for Proton Exchange Membrane Fuel Cell Based on Wavelet Transformation
,”
Int. J. Hydrogen Energy
,
45
(
39
), pp.
20339
20350
.
81.
Maizia
,
R.
,
Dib
,
A.
,
Thomas
,
A.
, and
Martemianov
,
S.
,
2017
, “
Statistical Short-Time Analysis of Electrochemical Noise Generated Within a Proton Exchange Membrane Fuel Cell
,”
J. Solid State Electrochem.
,
22
(
6
), pp.
1649
1660
.
82.
Benouioua
,
D.
,
Candusso
,
D.
,
Harel
,
F.
, and
Oukhellou
,
L.
,
2014
, “
Fuel Cell Diagnosis Method Based on Multifractal Analysis of Stack Voltage Signal
,”
Int. J. Hydrogen Energy
,
39
(
5
), pp.
2236
2245
.
83.
Benouioua
,
D.
,
Candusso
,
D.
,
Harel
,
F.
, and
Oukhellou
,
L.
,
2014
, “
PEMFC Stack Voltage Singularity Measurement and Fault Classification
,”
Int. J. Hydrogen Energy
,
39
(
36
), pp.
21631
21637
.
84.
Kim
,
J.
, and
Tak
,
Y.
,
2014
, “
Implementation of Discrete Wavelet Transform-Based Discrimination and State-of-Health Diagnosis for a Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
39
(
20
), pp.
10664
10682
.
85.
Ferrero
,
R.
,
Toscani
,
S.
,
Dotelli
,
G.
, and
Gallo Stampino
,
P.
,
2015
, “
Comparison Between Electrical and Pressure Measurements to Detect PEM Fuel Cell Flooding
,”
Proceedings of the 2015 IEEE Instrumentation & Measurement Technology Conference
,
Pisa, Italy
,
May 11–14
.
86.
Nguyen
,
T. T.
,
Doan
,
V. T.
, and
Choi
,
W.
,
2016
, “
Design of a Fuel Cell Power Conditioning System for Online Diagnosis and Load Leveling
,”
J. Power Electr.
,
16
(
2
), pp.
695
703
.
87.
Jeppesen
,
C.
,
Araya
,
S. S.
,
Sahlin
,
S. L.
,
Andreasen
,
S. J.
, and
Kær
,
S. K.
,
2017
, “
An EIS Alternative for Impedance Measurement of a High Temperature PEM Fuel Cell Stack Based on Current Pulse Injection
,”
Int. J. Hydrogen Energy
,
42
(
24
), pp.
15851
15860
.
88.
Bouaicha
,
A.
,
Allagui
,
H.
,
Mami
,
A.
,
Aglzim
,
E. H.
, and
Rouane
,
A.
,
2017
, “
Parameters Identification of the Complex Impedance Model of the PEM Fuel Cell Using Matlab/Simulink
,”
Proceedings of the 2017 International Conference on Green Energy Conversion Systems (GECS)
,
Hammamet, Tunisia
,
Mar. 23–25
.
89.
Bouaicha
,
A.
,
Allagui
,
H.
,
Aglzim
,
E.-H.
,
Rouane
,
A.
, and
Mami
,
A.
,
2016
, “
Study and Validation of a PEM Fuel Cell Complex Impedance Measurement System
,”
Indian J. Sci. Technol.
,
9
(
45
), pp.
1
9
.
90.
Bouaicha
,
A.
,
Allagui
,
H.
,
Aglzim
,
E.-H.
,
Rouane
,
A.
, and
Mami
,
A.
,
2017
, “
Validation of a Methodology for Determining the PEM Fuel Cell Complex Impedance Modelling Parameters
,”
Int. J. Hydrogen Energy
,
42
(
17
), pp.
12738
12748
.
91.
Lu
,
H.
,
Chen
,
J.
,
Yan
,
C.
, and
Liu
,
H.
,
2019
, “
On-Line Fault Diagnosis for Proton Exchange Membrane Fuel Cells Based on a Fast Electrochemical Impedance Spectroscopy Measurement
,”
J. Power Sources
,
430
, pp.
233
243
.
92.
Dotelli
,
G.
,
Ferrero
,
R.
,
Stampino
,
P. G.
, and
Latorrata
,
S.
,
2013
, “
Inverter Ripple as a Diagnostic Tool for Ohmic Resistance Measurements on PEM Fuel Cells
,”
Proceedings of the 2013 Applied Measurements for Power Systems (AMPS)
,
Aachen, Germany
,
Sept. 25–27
.
93.
Dotelli
,
G.
,
Ferrero
,
R.
,
Stampino
,
P. G.
,
Latorrata
,
S.
, and
Toscani
,
S.
,
2014
, “
Diagnosis of PEM Fuel Cell Drying and Flooding Based on Power Converter Ripple
,”
J. IEEE Trans. Instrum. Meas.
,
63
(
10
), pp.
2341
2348
.
94.
Dotelli
,
G.
,
Ferrero
,
R.
,
Stampino
,
P. G.
,
Latorrata
,
S.
, and
Toscani
,
S.
,
2015
, “
Low-Cost PEM Fuel Cell Diagnosis Based on Power Converter Ripple With Hysteresis Control
,”
J. IEEE Trans. Instrum. Meas.
,
64
(
11
), pp.
2900
2907
.
95.
Hinaje
,
M.
,
Sadli
,
I.
,
Martin
,
J. P.
,
Thounthong
,
P.
,
Raël
,
S.
, and
Davat
,
B.
,
2009
, “
Online Humidification Diagnosis of a PEMFC Using a Static DC–DC Converter
,”
Int. J. Hydrogen Energy
,
34
(
6
), pp.
2718
2723
.
96.
Chen
,
F.
, and
Gao
,
Y.
,
2015
, “
An Algorithm for On-Line Measurement of the Internal Resistance of Proton Exchange Membrane Fuel Cell
,”
Fuel Cells
,
15
(
2
), pp.
337
343
.
97.
Kitamura
,
N.
,
Manabe
,
K.
,
Nonobe
,
Y.
, and
Kizaki
,
M.
,
2010
, “
Development of Water Content Control System for Fuel Cell Hybrid Vehicles Based on AC Impedance
,”
SAE Technical Paper
,
41
, pp.
49
53
.
98.
Maruo
,
T.
,
Toida
,
M.
,
Ogawa
,
T.
,
Ishikawa
,
Y.
,
Imanishi
,
H.
,
Mitsuhiro
,
N.
, and
Ikogi
,
Y.
,
2017
, “
Development of Fuel Cell System Control for Sub-Zero Ambient Conditions
,”
Proceedings of the 2017 SAE World Congress Experience
,
Detroit, MI
,
Apr. 4
, pp.
4
6
.
99.
Hong
,
P.
,
Li
,
J.
,
Xu
,
L.
, and
Ouyang
,
M.
,
2016
, “
Design and Validation of an Embedded Signal Analyzer for AC Impedance Identification of PEM Fuel Cell
,”
Proceedings of the 2016 IEEE Transportation Electrification Asia-Pacific
,
Busan, South Korea
,
June 1–4
, pp.
1
4
.
100.
Hong
,
P.
,
Li
,
J.
,
Xu
,
L.
,
Ouyang
,
M.
, and
Fang
,
C.
,
2016
, “
Modeling and Simulation of Parallel DC/DC Converters for Online AC Impedance Estimation of PEM Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
41
(
4
), pp.
3004
3014
.
101.
Hong
,
P.
,
Xu
,
L.
,
Jiang
,
H.
,
Li
,
J.
, and
Ouyang
,
M.
,
2017
, “
A New Approach to Online AC Impedance Measurement at High Frequency of PEM Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
42
(
30
), pp.
19156
19169
.
You do not currently have access to this content.