Abstract

Lithium-ion batteries (LIBs) have been widely applied in modern society. The state of health (SOH) estimation can provide helpful guidance to maintain LIBs in advance. Machine learning (ML) and deep learning (DL) have been widely applied to pursue the high accuracy SOH estimation. However, the accuracy and performance of ML/DL methods heavily rely on their hyperparameters, and the hyperparameters tuning process for ML-/DL-based SOH estimation is mainly optimized by manual search, which are very time consuming and can hardly find the good hyperparameters configuration within the limited time resource. In this study, a new automatic long short-term memory (LSTM) method, called auto-LSTM, is developed for the SOH estimation, which can tune the hyperparameters in feature selection, LSTM structure, and its training algorithm in the automatic way. First, a LSTM model is developed for the SOH estimation. Second, the hyperparameters of the proposed LSTM are collected to be optimized by random search (RS) and tree Pazen estimator (TPE) automatically. Third, as the hyperparameters of auto-LSTM are characteristic as the hierarchy high dimension, a novel hyperparameter reduction algorithm (HRA) is developed to promote RS and TPE. The proposed auto-LSTM is tested on the NASA dataset and CALCE dataset. The results show that the proposed auto-LSTM with HRA can promote both RS and TPE on most case studies, validating its potential for providing a user-friendly and easy method for the SOH estimation on LIBs.

References

1.
Zhao
,
R.
,
Liu
,
J.
, and
Ma
,
F.
,
2020
, “
Cathode Chemistries and Electrode Parameters Affecting the Fast Charging Performance of Li-Ion Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021111
. 10.1115/1.4045567
2.
Cavalheiro
,
G. M.
,
Iriyama
,
T.
,
Nelson
,
G. J.
,
Huang
,
S.
, and
Zhang
,
G.
,
2020
, “
Effects of Nonuniform Temperature Distribution on Degradation of Lithium-Ion Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021101
. 10.1115/1.4045205
3.
Haji Akhoundzadeh
,
M.
,
Raahemifar
,
K.
,
Panchal
,
S.
,
Samadani
,
E.
,
Haghi
,
E.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2019
, “
A Conceptualized Hydrail Powertrain: A Case Study of the Union Pearson Express Route
,”
World Electr. Veh. J.
,
10
(
2
), p.
32
. 10.3390/wevj10020032
4.
Shui
,
L.
,
Peng
,
X.
,
Zhang
,
J.
,
Garg
,
A.
,
Nguyen
,
H. D.
, and
Phung Le
,
M. L.
,
2019
, “
A Coupled Mechanical–Electrochemical Study of Li-Ion Battery Based on Genetic Programming and Experimental Validation
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
1
), p.
011008
. 10.1115/1.4040824
5.
Chen
,
S.
,
Bao
,
N.
,
Peng
,
X.
,
Garg
,
A.
, and
Chen
,
Z.
,
2020
, “
A Thermal Design and Experimental Investigation for the Fast Charging Process of a Lithium-Ion Battery Module With Liquid Cooling
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021109
. 10.1115/1.4045324
6.
Li
,
W.
,
Jishnu
,
A. K.
,
Garg
,
A.
,
Xiao
,
M.
,
Peng
,
X.
, and
Gao
,
L.
,
2020
, “
Heat Transfer Efficiency Enhancement of Lithium-Ion Battery Packs by Using Novel Design of Herringbone Fins
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021108
. 10.1115/1.4046160
7.
Dai
,
H.
,
Zhao
,
G.
,
Lin
,
M.
,
Wu
,
J.
, and
Zheng
,
G.
,
2018
, “
A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain
,”
IEEE Trans. Ind. Electron.
,
66
(
10
), pp.
7706
7716
. 10.1109/TIE.2018.2880703
8.
Ng
,
K. S.
,
Moo
,
C. S.
,
Chen
,
Y. P.
, and
Hsieh
,
Y. C.
,
2009
, “
Enhanced Coulomb Counting Method for Estimating State-of-Charge and State-of-Health of Lithium-Ion Batteries
,”
Appl. Energy
,
86
(
9
), pp.
1506
1511
. 10.1016/j.apenergy.2008.11.021
9.
Weng
,
C.
,
Sun
,
J.
, and
Peng
,
H.
,
2014
, “
A Unified Open-Circuit-Voltage Model of Lithium-Ion Batteries for State-of-Charge Estimation and State-of-Health Monitoring
,”
J. Power Sources
,
258
, pp.
228
237
. 10.1016/j.jpowsour.2014.02.026
10.
Eddahech
,
A.
,
Briat
,
O.
,
Bertrand
,
N.
,
Delétage
,
J. Y.
, and
Vinassa
,
J. M.
,
2012
, “
Behavior and State-of-Health Monitoring of Li-Ion Batteries Using Impedance Spectroscopy and Recurrent Neural Networks
,”
Int. J. Electr. Power Energy Syst.
,
42
(
1
), pp.
487
494
. 10.1016/j.ijepes.2012.04.050
11.
He
,
W.
,
Williard
,
N.
,
Osterman
,
M.
, and
Pecht
,
M.
,
2011
, “
Prognostics of Lithium-Ion Batteries Based on Dempster-Shafer Theory and the Bayesian Monte Carlo Method
,”
J. Power Sources
,
196
(
23
), pp.
10314
10321
. 10.1016/j.jpowsour.2011.08.040
12.
Landi
,
M.
, and
Gross
,
G.
,
2014
, “
Measurement Techniques for Online Battery State of Health Estimation in Vehicle-to-Grid Applications
,”
IEEE Trans. Instrum. Meas.
,
63
(
5
), pp.
1224
1234
. 10.1109/TIM.2013.2292318
13.
Liu
,
Z.
,
Sun
,
G.
,
Bu
,
S.
,
Han
,
J.
,
Tang
,
X.
, and
Pecht
,
M.
,
2016
, “
Particle Learning Framework for Estimating the Remaining Useful Life of Lithium-Ion Batteries
,”
IEEE Trans. Instrum. Meas.
,
66
(
2
), pp.
280
293
. 10.1109/TIM.2016.2622838
14.
Patil
,
M. S.
,
Seo
,
J. H.
,
Panchal
,
S.
,
Jee
,
S. W.
, and
Lee
,
M. Y.
,
2020
, “
Investigation on Thermal Performance of Water-Cooled Li-Ion Pouch Cell and Pack at High Discharge Rate With U-Turn Type Microchannel Cold Plate
,”
Int. J. Heat Mass Transfer
,
155
, p.
119728
. 10.1016/j.ijheatmasstransfer.2020.119728
15.
Panchal
,
S.
,
Mathewson
,
S.
,
Fraser
,
R.
,
Culham
,
R.
, and
Fowler
,
M.
,
2017
,
Measurement of Temperature Gradient (dT/dy) and Temperature Response (dT/dt) of a Prismatic Lithium-Ion Pouch Cell With LiFePO4 Cathode Material
,
SAE Technical Paper 2017-01-1207
.
16.
Panchal
,
S.
,
Gudlanarva
,
K.
,
Tran
,
M. K.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2020
, “
High Reynold’s Number Turbulent Model for Micro-Channel Cold Plate Using Reverse Engineering Approach for Water-Cooled Battery in Electric Vehicles
,”
Energies
,
13
(
7
), p.
1638
. 10.3390/en13071638
17.
Ren
,
L.
,
Zhao
,
L.
,
Hong
,
S.
,
Zhao
,
S.
,
Wang
,
H.
, and
Zhang
,
L.
,
2018
, “
Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach
,”
IEEE Access
,
6
, pp.
50587
50598
. 10.1109/ACCESS.2018.2858856
18.
Wang
,
J.
,
Xu
,
C.
,
Yang
,
Z.
,
Zhang
,
J.
, and
Li
,
X.
,
2020
, “
Deformable Convolutional Networks for Efficient Mixed-Type Wafer Defect Pattern Recognition
,”
IEEE Trans. Semicond. Manuf.
,
33
(
4
),
587
596
. 10.1109/TSM.2020.3020985
19.
Wen
,
L.
,
Li
,
X. Y.
, and
Gao
,
L.
,
2020
, “
A New Two-Level Hierarchical Diagnosis Network Based on Convolutional Neural Network
,”
IEEE Trans. Instrum. Meas.
,
69
(
2
), pp.
330
338
. 10.1109/TIM.2019.2896370
20.
Wang
,
Y.
,
Ni
,
Y.
,
Li
,
N.
,
Lu
,
S.
,
Zhang
,
S.
,
Feng
,
Z.
, and
Wang
,
J.
,
2019
, “
A Method Based on Improved Ant Lion Optimization and Support Vector Regression for Remaining Useful Life Estimation of Lithium-Ion Batteries
,”
Energy Sci. Eng.
,
7
(
6
), pp.
2797
2813
. 10.1002/ese3.460
21.
Wang
,
Y.
,
Ni
,
Y.
,
Lu
,
S.
,
Wang
,
J.
, and
Zhang
,
X.
,
2019
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Using Support Vector Regression Optimized by Artificial Bee Colony
,”
IEEE Trans. Veh. Technol.
,
68
(
10
), pp.
9543
9553
. 10.1109/TVT.2019.2932605
22.
Tan
,
Y.
, and
Zhao
,
G.
,
2019
, “
A Novel State-of-Health Prediction Method for Lithium-Ion Batteries Based on Transfer Learning With Long Short-Term Memory Network
,”
IEEE Trans. Ind. Electron.
,
67
(
10
), pp.
8723
8731
. 10.1109/TIE.2019.2946551
23.
Yang
,
F.
,
Song
,
X.
,
Xu
,
F.
, and
Tsui
,
K. L.
,
2019
, “
State-of-Charge Estimation of Lithium-Ion Batteries via Long Short-Term Memory Network
,”
IEEE Access
,
7
, pp.
53792
53799
. 10.1109/ACCESS.2019.2912803
24.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
. 10.1109/TVT.2018.2805189
25.
Wen
,
L.
,
Li
,
X.
, and
Gao
,
L.
,
2020
, “
A New Reinforcement Learning Based Learning Rate Scheduler for Convolutional Neural Network in Fault Classification
,”
IEEE Trans. Ind. Electron.
10.1109/TIE.2020.3044808
26.
Hutter
,
F.
,
Kotthoff
,
L.
, and
Vanschoren
,
J.
,
2019
,
Automated Machine Learning: Methods, Systems, Challenges
,
Springer Nature
,
Cham
, p.
219
.
27.
Schaer
,
R.
,
Müller
,
H.
, and
Depeursinge
,
A.
,
2016
, “
Optimized Distributed Hyperparameter Search and Simulation for Lung Texture Classification in CT Using Hadoop
,”
J. Imaging
,
2
(
2
), p.
19
. 10.3390/jimaging2020019
28.
Bhat
,
P. C.
,
Prosper
,
H. B.
,
Sekmen
,
S.
, and
Stewart
,
C.
,
2018
, “
Optimizing Event Selection With the Random Grid Search
,”
Comput. Phys. Commun.
,
228
, pp.
245
257
. 10.1016/j.cpc.2018.02.018
29.
Wen
,
L.
,
Ye
,
X.
, and
Gao
,
L.
,
2020
, “
A New Automatic Machine Learning Based Hyper-Parameter Optimization for Workpiece Quality Prediction
,”
Meas. Control
,
53
(
7–8
),
1088
1098
. 10.1177/0020294020932347
30.
Bai
,
Y.
,
Sun
,
Z.
,
Zeng
,
B.
,
Long
,
J.
,
Li
,
L.
,
de Oliveira
,
J. V.
, and
Li
,
C.
,
2019
, “
A Comparison of Dimension Reduction Techniques for Support Vector Machine Modeling of Multi-Parameter Manufacturing Quality Prediction
,”
J. Intell. Manuf.
,
30
(
5
), pp.
2245
2256
. 10.1007/s10845-017-1388-1
31.
Chen
,
Y.
,
2020
, “
Partial Discharge Monitoring of Dry Distribution Transformer Based on Grid Search Scheme and Characteristic Analysis
,” Proceedings of PURPLE MOUNTAIN FORUM 2019-International Forum on Smart Grid Prot Y. Xue, Y. Zheng, and S. Rahman, eds, Lecture Notes in Electrical Engineering, vol. 584,
Springer, Singapore
.
32.
Hao
,
M. R.
,
Ahmad
,
M. A.
,
Ismail
,
R. M. T. R.
, and
Nasir
,
A. N. K.
,
2018
,
Intelligent Manufacturing & Mechatronics. Lecture Notes in Mechanical Engineering
,
M.
Hassan
, ed.,
Springer
,
Singapore
, pp.
657
670
.
33.
Jabbar
,
E.
,
Besse
,
P.
,
Loubes
,
J. M.
,
Roa
,
N. B.
,
Merle
,
C.
, and
Dettai
,
R.
,
2018
, “Supervised Learning Approach for Surface-Mount Device Production,” Machine Learning, Optimization, and Data Science. LOD 2018. Lecture Notes in Computer Science, vol. 11331,
G.
Nicosia
,
P.
Pardalos
,
G.
Giuffrida
,
R.
Umeton
, and
V.
Sciacca
, eds.,
Springer
,
Cham
.
34.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16)
,
Association for Computing Machinery
,
New York
, pp.
785
794
.
You do not currently have access to this content.