Abstract

Electric vehicles (EVs) have been widely cherished by consumers in recent years. However, as the number of EVs continues to increase, the number of retired power batteries will also increase, especially retired power lithium-ion batteries (LIBs), which will cause serious energy waste. To reuse sufficiently retired power LIBs, we studied the remaining useful life (RUL) of the power LIBs after retirement, so that the battery can be used in different usage scenarios, such as electric bicycles, grid energy storage, and communication base stations. The study first considers the inconsistency of the internal resistance and capacity of the LIBs pack and uses the battery available energy to predict the RUL of the retired power LIBs. Then, we further use the genetic programming (GP) method to predict the RUL of retired power LIBs. The case study shows the prediction accuracy of GP is better than response surface methodology (RSM), Kriging, and radial basis function (RBF) surrogate model. When the LIBs cycles are 100, 110, 120, and 130, the GP model prediction is relatively accurate and the minimum prediction error is only 5.26%.

References

1.
Fontaras
,
G.
,
Zacharof
,
N. G.
, and
Ciuffo
,
B.
,
2017
, “
Fuel Consumption and CO2 Emissions From Passenger Cars in Europe Laboratory Versus Real-World Emissions
,”
Prog. Energy Combust. Sci.
,
60
, pp.
97
131
.
2.
Angnunavuri
,
P. N.
,
Kuranchie
,
F. A.
,
Attiogbe
,
F.
, and
Nerquaye-Tetteh
,
E. N.
,
2019
, “
The Potential of Integrating Vehicular Emissions Policy Into Ghana's Transport Policy for Sustainable Urban Mobility
,”
SN Appl. Sci.
,
1
(
10
), p.
1201
.
3.
Ibarra
,
D.
,
Ramirez-Mendoza
,
R.
, and
Lopez
,
E.
,
2017
, “
Noise Emission From Alternative Fuel Vehicles: Study Case
,”
Appl. Acoust.
,
118
, pp.
58
65
.
4.
Fan
,
E. S.
,
Li
,
L.
,
Wang
,
Z. P.
,
Lin
,
J.
,
Huang
,
Y. X.
,
Yao
,
Y.
,
Chen
,
R. J.
, and
Wu
,
F.
,
2020
, “
Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects
,”
Chem. Rev.
,
120
(
14
), pp.
7020
7063
.
5.
Zhang
,
X. X.
,
Li
,
L.
,
Fan
,
E. S.
,
Xue
,
Q.
,
Bian
,
Y. F.
,
Wu
,
F.
, and
Chen
,
R. J.
,
2018
, “
Toward Sustainable and Systematic Recycling of Spent Rechargeable Batteries
,”
Chem. Soc. Rev.
,
47
(
19
), pp.
7239
7302
.
6.
Liu
,
C. B.
,
Tan
,
J.
, and
Wang
,
X. L.
,
2020
, “
A Data-Driven Decision-Making Optimization Approach for Inconsistent Lithium-Ion Cell Screening
,”
J. Intell. Manuf.
,
31
(
4
), pp.
833
845
.
7.
Lih
,
W.-C.
,
Yen
,
J.-H.
,
Shieh
,
F.-H.
, and
Liao
,
Y.-M.
,
2012
, “
Second-Use Applications of Lithium-Ion Batteries Retired From Electric Vehicles: Challenges, Repurposing Process, Cost Analysis and Optimal Business Model
,”
Int. J. Adv. Comput. Technol.
,
4
(
22
), pp.
518
527
.
8.
Li
,
X.
,
Song
,
K.
,
Wei
,
G.
,
Lu
,
R.
, and
Zhu
,
C.
,
2015
, “
A Novel Grouping Method for Lithium Iron Phosphate Batteries Based on A Fractional Joint Kalman Filter and A New Modified K-Means Clustering Algorithm
,”
Energies
,
8
(
8
), pp.
7703
7728
.
9.
Zhao
,
G.
,
Wu
,
W.
,
Qiu
,
W.
,
Liu
,
S.
, and
Wang
,
G.
,
2012
, “
Secondary Use of PHEV and EV Lithium-Ion Batteries in Stationary Applications as Energy Storage System
,”
Proceeding of 2012 International Conference on Frontier of Nanoscience and Technology
,
Hong Kong, China
,
July 26–27
, pp.
202
205
.
10.
Ahmadi
,
L.
,
Fowler
,
M.
,
Young
,
S. B.
,
Fraser
,
R. A.
,
Gaffney
,
B.
, and
Walker
,
S. B.
,
2014
, “
Energy Efficiency of Li-Ion Battery Packs Re-Used in Stationary Power Applications
,”
Sustainable Energy Technol. Assess.
,
8
, pp.
9
17
.
11.
Hongjing
,
C.
,
2019
, “
Research on Remaining Useful Life Prediction of Lithium-Ion Battery and Screening Method of Recycling Battery
,”
School of Mechanical Engineering, Southeast University
,
Nanjing, China
, pp.
1
73
, https://kreader.cnki.net/Kreader/CatalogViewPage.aspx?dbCode=cdmd&filename=1020611671.nh&tablename=CMFD202001&compose=&first=1&uid=WEEvREcwSlJHSldSdmVqMVc3M1dFRDhlWG5GZWhablJheHRLUWhjOXJrYz0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!.
12.
Miao
,
Q.
,
Xie
,
L.
,
Cui
,
H. J.
,
Liang
,
W.
, and
Pecht
,
M.
,
2013
, “
Remaining Useful Life Prediction of Lithium-Ion Battery With Unscented Particle Filter Technique
,”
Microelectr. Reliab.
,
53
(
6
), pp.
805
810
.
13.
Chen
,
L.
,
Zhang
,
Y.
,
Zheng
,
Y.
,
Li
,
X.
, and
Zheng
,
X.
,
2020
, “
Remaining Useful Life Prediction of Lithium-Ion Battery With Optimal Input Sequence Selection and Error Compensation
,”
Neurocomputing
,
414
, pp.
245
254
.
14.
Ma
,
G. J.
,
Zhang
,
Y.
,
Cheng
,
C.
,
Zhou
,
B. T.
,
Hu
,
P. C.
, and
Yuan
,
Y.
,
2019
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Based on False Nearest Neighbors and A Hybrid Neural Network
,”
Appl. Energy
,
253
, p.
113626
.
15.
Lin
,
C.-P.
,
Cabrera
,
J.
,
Yang
,
F.
,
Ling
,
M.-H.
,
Tsui
,
K.-L.
, and
Bae
,
S.-J.
,
2020
, “
Battery State of Health Modeling and Remaining Useful Life Prediction Through Time Series Model
,”
Appl. Energy
,
275
, p.
115338
.
16.
Zhang
,
Y. Z.
,
Xiong
,
R.
,
He
,
H. W.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
.
17.
Kaur
,
K.
,
Garg
,
A.
,
Cui
,
X.
,
Singh
,
S.
, and
Panigrahi
,
B. K.
,
2021
, “
Deep Learning Networks for Capacity Estimation for Monitoring SOH of Li-Ion Batteries for Electric Vehicles
,”
Int. J. Energy Res.
,
45
(
2
), pp.
3113
3128
.
18.
Liao
,
L.
,
2014
, “
Discovering Prognostic Features Using Genetic Programming in Remaining Useful Life Prediction
,”
IEEE Trans. Ind. Electr.
,
61
(
5
), pp.
2464
2472
.
19.
Choudhari
,
V. G.
,
Dhoble
,
A. S.
, and
Panchal
,
S.
,
2020
, “
Numerical Analysis of Different Fin Structures in Phase Change Material Module for Battery Thermal Management System and Its Optimization
,”
Int. J. Heat Mass Transfer
,
163
, p.
120434
.
20.
Patil
,
M. S.
,
Seo
,
J.-H.
,
Panchal
,
S.
, and
Lee
,
M.-Y.
,
2021
, “
Numerical Study on Sensitivity Analysis of Factors Influencing Liquid Cooling With Double Cold-Plate for Lithium-Ion Pouch Cell
,”
Int. J. Energy Res.
,
45
(
2
), pp.
2533
2559
.
21.
Akhoundzadeh
,
M. H.
,
Raahemifar
,
K.
,
Panchal
,
S.
,
Samadani
,
E.
,
Haghi
,
E.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2019
, “
A Conceptualized Hydrail Powertrain: A Case Study of The Union Pearson Express Route
,”
World Electric Veh. J.
,
10
(
2
), p.
32
.
22.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
, and
Gao
,
L.
,
2020
, “
Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on Gaussian Process Model
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), pp.
1
19
.
23.
Sarmah
,
S. B.
,
Kalita
,
P.
,
Garg
,
A.
,
Niu
,
X. D.
,
Zhang
,
X. W.
,
Peng
,
X. B.
, and
Bhattacharjee
,
D.
,
2019
, “
A Review of State of Health Estimation of Energy Storage Systems: Challenges and Possible Solutions for Futuristic Applications of Li-Ion Battery Packs in Electric Vehicles
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
040801
.
24.
Dubarry
,
M.
,
Baure
,
G.
, and
Ansean
,
D.
,
2020
, “
Perspective on State-of-Health Determination in Lithium-Ion Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
4
), p.
044701
.
25.
Jiao
,
R.
,
Peng
,
K.
, and
Dong
,
J.
,
2020
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Conditional Variational Autoencoders-Particle Filter
,”
IEEE Trans. Instrum. Meas.
,
69
(
11
), pp.
8831
8843
.
26.
Zhang
,
W.
,
Li
,
X.
, and
Li
,
X.
,
2020
, “
Deep Learning-Based Prognostic Approach for Lithium-Ion Batteries With Adaptive Time-Series Prediction and On-line Validation
,”
Measurement
,
164
, p.
108052
.
27.
Liao
,
Q. Q.
,
Mu
,
M. M.
,
Zhao
,
S. Q.
,
Zhang
,
L. Z.
,
Jiang
,
T.
,
Ye
,
J. L.
,
Shen
,
X. W.
, and
Zhou
,
G. D.
,
2017
, “
Performance Assessment and Classification of Retired, Lithium-Ion Battery From Electric Vehicles for Energy Storage
,”
Int. J. Hydrogen Energy
,
42
(
30
), pp.
18817
18823
.
28.
Remmlinger
,
J.
,
Buchholz
,
M.
,
Meiler
,
M.
,
Bernreuter
,
P.
, and
Dietmayer
,
K.
,
2011
, “
State-of-Health Monitoring of Lithium-Ion Batteries in Electric Vehicles by On-board Internal Resistance Estimation
,”
J. Power Sources
,
196
(
12
), pp.
5357
5363
.
29.
Diao
,
W. P.
,
Jiang
,
J. C.
,
Zhang
,
C. P.
,
Liang
,
H.
, and
Pecht
,
M.
,
2017
, “
Energy State of Health Estimation for Battery Packs Based on The Degradation and Inconsistency
,”
Proceedings of The 9th International Conference on Applied Energy
,
Cardiff, UK
,
Aug. 21–24
, pp.
3578
3583
.
30.
Garg
,
A.
,
Wei
,
L.
,
Goyal
,
A.
,
Cui
,
X.
, and
Gao
,
L.
,
2019
, “
Evaluation of Batteries Residual Energy for Battery Pack Recycling: Proposition of Stack Stress-Coupled-AI Approach
,”
J. Energy Storage
,
26
, p.
101001
.
31.
Ren
,
H. B.
,
Zhao
,
Y. Z.
,
Chen
,
S. Z.
, and
Wang
,
T. P.
,
2019
, “
Design and Implementation of a Battery Management System With Active Charge Balance Based on the SOC and SOH Online Estimation
,”
Energy
,
166
, pp.
908
917
.
32.
Severson
,
K. A.
,
Attia
,
P. M.
,
Jin
,
N.
,
Perkins
,
N.
,
Jiang
,
B.
,
Yang
,
Z.
,
Chen
,
M. H.
,
Aykol
,
M.
,
Herring
,
P. K.
,
Fraggedakis
,
D.
,
Bazan
,
M. Z.
,
Harris
,
S. J.
,
Chueh
,
W. C.
, and
Braatz
,
R. D.
,
2019
, “
Data-Driven Prediction of Battery Cycle Life Before Capacity Degradation
,”
Nat. Energy
,
4
(
5
), pp.
383
391
.
33.
Wang
,
D.
,
Yang
,
F. F.
,
Tsui
,
K. L.
,
Zhou
,
Q.
, and
Bae
,
S. J.
,
2016
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter
,”
IEEE Trans. Instrum. Meas.
,
65
(
6
), pp.
1282
1291
.
34.
Guha
,
A.
, and
Patra
,
A.
,
2018
, “
State of Health Estimation of Lithium-Ion Batteries Using Capacity Fade and Internal Resistance Growth Models
,”
IEEE Trans. Transp. Electrif.
,
4
(
1
), pp.
135
146
.
35.
Saha
,
B.
, and
Goebel
,
K.
,
2007
,
Battery Data Set
,
NASA Ames Prognostics Data Repository, NASA Ames Research Center
,
Moffeti Field, CA
. https://ti.arc.nasa.gov/project/prognostic-data-repository
36.
Ribeiro
,
L. G.
,
Maia
,
M. A.
,
Parente
Jr,
E.
, and
Melo
,
A. M. C. d.
,
2020
, “
Surrogate Based Optimization of Functionally Graded Plates Using Radial Basis Functions
,”
Compos. Struct.
,
252
, p.
112677
.
37.
Ulaganathan
,
S.
,
Couckuyt
,
I.
,
Deschrijver
,
D.
,
Laermans
,
E.
, and
Dhaene
,
T.
,
2015
, “
A Matlab Toolbox for Kriging Metamodelling
,”
Procedia Comput. Sci.
,
51
, pp.
2708
2713
.
You do not currently have access to this content.