Abstract

This study aims to synthesize carbon nanofiber as supercapacitor electrodes from pineapple leaf fibers using two steps. The first step involved varying the raw materials termed (i) pineapple leaves, (ii) pineapple leaf fibers, and (iii) the combination of both. The best electrochemical properties in the first step were used as raw material for the second step with varied KOH concentrations at 0.5 M, 0.7 M, and 0.9 M. Furthermore, the optimum specific capacitance based on cyclic voltammetry method for both steps were 175 F g−1 and 191 F g−1, respectively. For the second step, the physical properties, including density, surface morphology, elemental content, N2 gas adsorption–desorption isotherm, and crystalline structure, were analyzed. The result showed the density of the pineapple leaf fiber activated carbon (PALF-AC) electrode steadily declined from 27.93 to 51.72% after carbonization-activation. The optimum specific surface area is as high as 945 m2 g−1 for the PALF-AC0.9 electrode. In addition, the nanofiber diameter on surface morphology based on scanning electron microscopic (SEM) analysis in the range of 35–185 nm. Therefore, a carbon nanofiber–based electrode from pineapple leaf fibers (PALF) shows promising capacitive properties and great potential for use on energy storage devices.

References

References
1.
Conway
,
B. E.
,
1999
, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications,
Kluwer Academic/Plenum Publishers
,
New York
. 10.1017/CBO9781107415324.004
2.
Simon
,
P.
, and
Gogotsi
,
Y.
,
2008
, “
Materials for Electrochemical Capacitors
,”
Nat. Mater.
,
7
(
11
), pp.
845
854
. 10.1038/nmat2297
3.
Xiong
,
G.
,
Meng
,
C.
,
Reifenberger
,
R. G.
,
Irazoqui
,
P. P.
, and
Fisher
,
T. S.
,
2014
, “
A Review of Graphene-Based Electrochemical Microsupercapacitors
,”
Electroanalysis
,
26
(
1
), pp.
30
51
. 10.1002/elan.201300238
4.
Stoller
,
M. D.
,
Park
,
S.
,
Yanwu
,
Z.
,
An
,
J.
, and
Ruoff
,
R. S.
,
2008
, “
Graphene-Based Ultracapacitors
,”
Nano Lett.
,
8
(
10
), pp.
3498
3502
. 10.1021/nl802558y
5.
Li
,
G. R.
,
Wang
,
F.
,
Jiang
,
Q. W.
,
Gao
,
X. P.
, and
Shen
,
P. W.
,
2010
, “
Carbon Nanotubes with Titanium Nitride as a Low-Cost Counter Electrode Material for Dye-Sensitized Solar Cells
,”
Angew. Chemie—Int. Ed.
,
49
(
21
), pp.
3653
3656
. 10.1002/anie.201000659
6.
Tang
,
W.
,
Zhang
,
Y.
,
Zhong
,
Y.
,
Shen
,
T.
,
Wang
,
X.
,
Xia
,
X.
, and
Tu
,
J.
,
2017
, “
Natural Biomass-Derived Carbons for Electrochemical Energy Storage
,”
Mater. Res. Bull.
,
88
, pp.
234
241
. 10.1016/j.materresbull.2016.12.025
7.
Zhang
,
B.
,
Kang
,
F.
,
Tarascon
,
J. M.
, and
Kim
,
J. K.
,
2016
, “
Recent Advances in Electrospun Carbon Nanofibers and Their Application in Electrochemical Energy Storage
,”
Prog. Mater. Sci.
,
76
, pp.
319
380
. 10.1016/j.pmatsci.2015.08.002
8.
Kong
,
W.
,
Yan
,
L.
,
Luo
,
Y.
,
Wang
,
D.
,
Jiang
,
K.
,
Li
,
Q.
,
Fan
,
S.
, and
Wang
,
J.
,
2017
, “
Li-S Batteries: Ultrathin MnO2 /Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide-Trapping Shield for High-Performance Li-S Batteries
,”
Adv. Funct. Mater.
,
27
(
18
), p.
2017
. 10.1002/adfm.201770113
9.
Faccini
,
M.
,
Borja
,
G.
,
Boerrigter
,
M.
,
Mart
,
M.
,
Crespiera
,
S. M.
,
Vazquez-Campos
,
S.
,
Aubouy
,
L.
, and
Amantia
,
D.
,
2015
, “
Electrospun Carbon Nanofiber Membranes for Filtration of Nanoparticles From Water Hyacinth
,”
J. Nanomater.
,
2015
(
Spec. Issue
), pp.
1
9
. 10.1155/2015/247471
10.
Yang
,
C.
,
Chen
,
C.
,
Pan
,
Y.
,
Li
,
S.
,
Wang
,
F.
,
Li
,
J.
,
Li
,
N.
,
Li
,
X.
,
Zhang
,
Y.
, and
Li
,
D.
,
2015
, “
Flexible Highly Specific Capacitance Aerogel Electrodes Based on Cellulose Nanofibers, Carbon Nanotubes and Polyaniline
,”
Electrochim. Acta
,
182
, pp.
264
271
. 10.1016/j.electacta.2015.09.096
11.
Duan
,
B.
,
Gao
,
X.
,
Yao
,
X.
,
Fang
,
Y.
,
Huang
,
L.
,
Zhou
,
J.
, and
Zhang
,
L.
,
2016
, “
Unique Elastic N-Doped Carbon Nanofibrous Microspheres With Hierarchical Porosity Derived From Renewable Chitin for High Rate Supercapacitors
,”
Nano Energy
,
27
, pp.
482
491
. 10.1016/j.nanoen.2016.07.034
12.
Deng
,
L.
,
Zhong
,
W.
,
Wang
,
J.
,
Zhang
,
P.
,
Fang
,
H.
,
Yao
,
L.
,
Liu
,
X.
,
Ren
,
X.
, and
Li
,
Y.
,
2017
, “
The Enhancement of Electrochemical Capacitance of Biomass-Carbon by Pyrolysis of Extracted Nanofibers
,”
Electrochim. Acta
,
228
, pp.
398
406
. 10.1016/j.electacta.2017.01.099
13.
Yun
,
S. I.
,
Kim
,
S. H.
,
Kim
,
D. W.
,
Kim
,
Y. A.
, and
Kim
,
B. H.
,
2019
, “
Facile Preparation and Capacitive Properties of Low-Cost Carbon Nanofibers With ZNO Derived From Lignin and Pitch as Supercapacitor Electrodes
,”
Carbon N. Y.
,
149
, pp.
637
645
. 10.1016/j.carbon.2019.04.105
14.
Asrofi
,
M.
,
Abral
,
H.
,
Kasim
,
A.
,
Pratoto
,
A.
,
Mahardika
,
M.
,
Park
,
J. W.
, and
Kim
,
H. J.
,
2018
, “
Isolation of Nanocellulose From Water Hyacinth Fiber (WHF) Produced via Digester-Sonication and Its Characterization
,”
Fibers Polym.
,
19
(
8
), pp.
1618
1625
. 10.1007/s12221-018-7953-1
15.
Klemm
,
D.
,
Kramer
,
F.
,
Moritz
,
S.
,
Lindström
,
T.
,
Ankerfors
,
M.
,
Gray
,
D.
, and
Dorris
,
A.
,
2011
, “
Nanocelluloses: A New Family of Nature-Based Materials
,”
Angew. Chemie—Int. Ed.
,
50
(
24
), pp.
5438
5466
. 10.1002/anie.201001273
16.
John
,
M. J.
, and
Thomas
,
S.
,
2008
, “
Biofibres and Biocomposites
,”
Carbohydr. Polym.
,
71
(
3
), pp.
343
364
. 10.1016/j.carbpol.2007.05.040
17.
Abraham
,
E.
,
Deepa
,
B.
,
Pothan
,
L. A.
,
Jacob
,
M.
,
Thomas
,
S.
,
Cvelbar
,
U.
, and
Anandjiwala
,
R.
,
2011
, “
Extraction of Nanocellulose Fibrils From Lignocellulosic Fibres: A Novel Approach
,”
Carbohydr. Polym.
,
86
(
4
), pp.
1468
1475
. 10.1016/j.carbpol.2011.06.034
18.
Asrofi
,
M.
,
Abral
,
H.
,
Kasim
,
A.
, and
Pratoto
,
A.
,
2017
, “
Characterization of The Microfibrillated Cellulose From Water Hyacinth Pulp After Alkali Treatment and Wet Blending
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
204
(
1
), p.
012018
. 10.1088/1757-899X/204/1/012018
19.
Kengkhetkit
,
N.
, and
Amornsakchai
,
T.
,
2014
, “
A New Approach to “Greening” Plastic Composites Using Pineapple Leaf Waste for Performance and Cost Effectiveness
,”
Mater. Des.
,
55
, pp.
292
299
. 10.1016/j.matdes.2013.10.005
20.
Mishra
,
S.
,
Misra
,
M.
,
Tripathy
,
S. S.
,
Nayak
,
S. K.
, and
Mohanty
,
A. K.
,
2001
, “
Potentiality of Pineapple Leaf Fibre as Reinforcement in PALF-Polyester Composite: Surface Modification and Mechanical Performance
,”
J. Reinf. Plast. Compos.
,
20
(
1
), pp.
321
334
. 10.1177/073168401772678779
21.
Asim
,
M.
,
Abdan
,
K.
,
Jawaid
,
M.
,
Nasir
,
M.
,
Dashtizadeh
,
Z.
,
Ishak
,
M. R.
, and
Hoque
,
M. E.
,
2015
, “
A Review on Pineapple Leaves Fibre and Its Composites
,”
Int. J. Polym. Sci.
,
2015
(
6
), pp.
1
16
. 10.1155/2015/950567
22.
Sodtipinta
,
J.
,
Amornsakchai
,
T.
, and
Pakawatpanurut
,
P.
,
2017
, “
Nanoporous Carbon Derived From Agro-Waste Pineapple Leaves for Supercapacitor Electrode
,”
Adv. Nat. Sci. Nanosci. Nanotechnol.
,
8
(
3
), pp.
1
10
. 10.1088/2043-6254/aa7233
23.
Sodtipinta
,
J.
,
Ieosakulrat
,
C.
,
Poonyayant
,
N.
,
Kidkhunthod
,
P.
,
Chanlek
,
N.
,
Amornsakchai
,
T.
, and
Pakawatpanurut
,
P.
,
2017
, “
Interconnected Open-Channel Carbon Nanosheets Derived From Pineapple Leaf Fiber as a Sustainable Active Material for Supercapacitors
,”
Ind. Crops Prod.
,
104
, pp.
13
20
. 10.1016/j.indcrop.2017.04.015
24.
Taer
,
E.
,
Apriwandi
,
A.
,
Ningsih
,
Y. S.
,
Taslim
,
R.
, and
Agustino
,
2019
, “
Preparation of Activated Carbon Electrode From Pineapple Crown Waste for Supercapacitor Application
,”
Int. J. Electrochem. Sci.
,
14
(
3
), pp.
2462
2475
. 10.20964/2019.03.17
25.
Jonoobi
,
M.
,
Harun
,
J.
,
Shakeri
,
A.
,
Misra
,
M.
, and
Oksman
,
K.
,
2009
, “
Chemical Composition, Crystallinity, and Thermal Degradation of Bleached and Unbleached Kenaf Bast (Hibiscus Cannabinus) Pulp and Nanofibers
,”
BioResources
,
4
(
2
), pp.
626
639
. 10.15376/biores.4.2.626-639
26.
Li
,
J.
,
Wei
,
X.
,
Wang
,
Q.
,
Chen
,
J.
,
Chang
,
G.
,
Kong
,
L.
,
Su
,
J.
, and
Liu
,
Y.
,
2012
, “
Homogeneous Isolation of Nanocellulose From Sugarcane Bagasse By High Pressure Homogenization
,”
Carbohydr. Polym.
,
90
(
4
), pp.
1609
1613
. 10.1016/j.carbpol.2012.07.038
27.
Wang
,
Y.
,
Wei
,
X.
,
Li
,
J.
,
Wang
,
F.
,
Wang
,
Q.
,
Chen
,
J.
, and
Kong
,
L.
,
2015
, “
Study on Nanocellulose By High Pressure Homogenization in Homogeneous Isolation
,”
Fibers Polym.
,
16
(
3
), pp.
572
578
. 10.1007/s12221-015-0572-1
28.
Fahma
,
F.
,
Iwamoto
,
S.
,
Hori
,
N.
,
Iwata
,
T.
, and
Takemura
,
A.
,
2010
, “
Isolation, Preparation, and Characterization of Nanofibers From Oil Palm Empty-Fruit-Bunch (OPEFB)
,”
Cellulose
,
17
(
5
), pp.
977
985
. 10.1007/s10570-010-9436-4
29.
Chen
,
W.
,
Yu
,
H.
,
Liu
,
Y.
,
Chen
,
P.
,
Zhang
,
M.
, and
Hai
,
Y.
,
2011
, “
Individualization of Cellulose Nanofibers From Wood Using High-Intensity Ultrasonication Combined With Chemical Pretreatments
,”
Carbohydr. Polym.
,
83
(
4
), pp.
1804
1811
. 10.1016/j.carbpol.2010.10.040
30.
Abral
,
H.
,
Lawrensius
,
V.
,
Handayani
,
D.
, and
Sugiarti
,
E.
,
2018
, “
Preparation of Nano-Sized Particles From Bacterial Cellulose Using Ultrasonication and Their Characterization
,”
Carbohydr. Polym.
,
191
, pp.
161
167
. 10.1016/j.carbpol.2018.03.026
31.
Solikhin
,
A.
,
Hadi
,
Y. S.
,
Massijaya
,
M. Y.
, and
Nikmatin
,
S.
,
2017
, “
Novel Isolation of Empty Fruit Bunch Lignocellulose Nanofibers Using Different Vibration Milling Times-Assisted Multimechanical Stages
,”
Waste Biomass Valorization
,
8
(
7
), pp.
2451
2462
. 10.1007/s12649-016-9765-0
32.
Taniguchi
,
T.
, and
Okamura
,
K.
,
1998
, “
New Films Produced From Microfibrillated Natural Fibres
,”
Polym. Int.
,
47
(
3
), pp.
291
294
. 10.1002/(SICI)1097-0126(199811)47:3 < 291::AID-PI11>3.0.CO;2-1
33.
Nechyporchuk
,
O.
,
Pignon
,
F.
, and
Belgacem
,
M. N.
,
2014
, “
Morphological Properties of Nanofibrillated Cellulose Produced Using Wet Grinding as an Ultimate Fibrillation Process
,”
J. Mater. Sci.
,
50
(
2
), pp.
531
541
. 10.1007/s10853-014-8609-1
34.
Taer
,
E.
,
Deraman
,
M.
,
Talib
,
I. A.
,
Umar
,
A. A.
,
Oyama
,
M.
, and
Yunus
,
R. M.
,
2010
, “
Physical, Electrochemical and Supercapacitive Properties of Activated Carbon Pellets From Pre-carbonized Rubber Wood Sawdust by CO2 Activation
,”
Curr. Appl. Phys.
,
10
(
4
), pp.
1071
1075
. 10.1016/j.cap.2009.12.044
35.
Taer
,
E.
,
Dewi
,
P.
,
Sugianto
,
S.
,
Syech
,
R.
,
Taslim
,
R.
,
Salomo
,
S.
,
Susanti
,
Y.
,
Purnama
,
A.
,
Apriwandi
,
A.
,
Agustino
,
A.
, and
Setiadi
,
R. N.
,
2018
, “
The Synthesis of Carbon Electrode Supercapacitor From Durian Shell Based on Variations in the Activation Time
,”
AIP Conf. Proc.
,
1927
(
1
), pp.
030026
. 10.1063/1.5021219
36.
Taslim
,
R.
,
Agustino
,
A.
, and
Taer
,
E.
,
2018
, “
Naturalcarbon-Metal Composite for Supercapacitor Application
,”
J. Phys. Conf. Ser.
,
1120
(
1
), p.
012008
. 10.1088/1742-6596/1120/1/012008
37.
Taer
,
E.
,
Apriwandi
,
A.
,
Yusriwandi
,
Y.
,
Mustika
,
W. S.
,
Zulkifli
,
Z.
,
Taslim
,
R.
,
Sugianto
,
S.
,
Kurniasih
,
B.
,
Agustino
,
A.
, and
Dewi
,
P.
,
2018
, “
Comparative Study of CO2 and H2O Activation in the Synthesis of Carbon Electrode for Supercapacitors
,”
AIP Conf. Proc.
,
1927
(
29
), pp.
030036
. 10.1063/1.5021229
38.
Taer
,
E.
,
Apriwandi
,
A.
,
Taslim
,
R.
,
Malik
,
U.
, and
Usman
,
Z.
,
2019
, “
Single Step Carbonization-Activation of Durian Shells for Producing Activated Carbon Monolith Electrodes
,”
Int. J. Electrochem. Sci.
,
14
(
2
), pp.
1318
1330
. 10.20964/2019.02.67
39.
Taslim
,
R.
,
Dewi
,
T. R.
,
Taer
,
E.
,
Apriwandi
,
A.
,
Agustino
,
A.
, and
Setiadi
,
R. N.
,
2018
, “
Effect of Physical Activation Time on the Preparation of Carbon Electrodes From Pineapple Crown Waste for Supercapacitor Application
,”
J. Phys. Conf. Ser.
,
1120
(
1
), p.
012084
. 10.1088/1742-6596/1120/1/012084
40.
Selvakumar
,
M.
,
Bhat
,
D. K.
,
Aggarwal
,
A. M.
,
Iyer
,
S. P.
, and
Sravani
,
G.
,
2010
, “
Nano ZnO-Activated Carbon Composite Electrodes for Supercapacitors
,”
Phys. B Condens. Matter
,
405
(
9
), pp.
2286
2289
. 10.1016/j.physb.2010.02.028
41.
Fan
,
Z.
,
Yan
,
J.
,
Wei
,
T.
,
Zhi
,
L.
,
Ning
,
G.
,
Li
,
T.
, and
Wei
,
F.
,
2011
, “
Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes With High Power and Energy Density
,”
Adv. Funct. Mater.
,
21
(
12
), pp.
2366
2375
. 10.1002/adfm.201100058
42.
Zhang
,
Y.
,
Li
,
X.
,
Huang
,
J.
,
Xing
,
W.
, and
Yan
,
Z.
,
2016
, “
Functionalization of Petroleum Coke-Derived Carbon for Synergistically Enhanced Capacitive Performance
,”
Nanoscale Res. Lett.
,
11
(
1
), pp.
163
169
. 10.1186/s11671-016-1382-0
43.
Deraman
,
M.
,
Nor
,
N. S. M.
,
Taer
,
E.
,
Yatim
,
B.
,
Awitdrus
,
Farma
,
R.
,
Basri
,
N. H.
,
Othman
,
M. A. R.
,
Omar
,
R.
,
Jasni
,
M. R. M.
,
Daik
,
R.
,
Soltaninejad
,
S.
,
Suleman
,
M.
,
Hegde
,
G.
, and
Astimar
,
A. A.
,
2016
, “
Review of Energy and Power of Supercapacitor Using Carbon Electrodes From Fibers of Oil Palm Fruit Bunches
,”
Mater. Sci. Forum
,
846
, pp.
497
504
. www.scientific.net/MSF.846.497
44.
González
,
A.
,
Goikolea
,
E.
,
Barrena
,
J. A.
, and
Mysyk
,
R.
,
2016
, “
Review on Supercapacitors: Technologies and Materials
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1189
1206
. 10.1016/j.rser.2015.12.249
45.
Taer
,
E.
,
Taslim
,
R.
,
Mustika
,
W. S.
,
Kurniasih
,
B.
,
Agustino
,
Afrianda
,
A.
, and
Apriwandi
,
2018
, “
Production of an Activated Carbon From a Banana Stem and Its Application as Electrode Materials for Supercapacitors
,”
Int. J. Electrochem. Sci.
,
13
(
9
), pp.
8428
8439
. 10.20964/2018.09.55
46.
Taer
,
E.
,
Zulkifli
,
A.
,
Taslim
,
R.
,
Agustino
,
A.
, and
Apriwandi
,
2018
, “
Synthesis of Carbon Nanofibers From Cellulose Water Chestnut Biomass for Supercapacitor Applications
,”
Curr. Top. Electrochem.
,
20
(
1
), pp.
39
45
.
47.
Taer
,
E.
,
Taslim
,
R.
,
Putri
,
A. W.
,
Apriwandi
,
A.
, and
Agustino
,
A.
,
2018
, “
Activated Carbon Electrode Made From Coconut Husk Waste for Supercapacitor Application
,”
Int. J. Electrochem. Sci.
,
13
(
12
), pp.
12072
12084
. 10.20964/2018.12.19
48.
Biswal
,
M.
,
Banerjee
,
A.
,
Deo
,
M.
, and
Ogale
,
S.
,
2013
, “
From Dead Leaves to High Energy Density Supercapacitors
,”
Energy Environ. Sci.
,
6
(
4
), pp.
1249
1259
. 10.1039/c3ee22325f
49.
Liu
,
H. Y.
,
Wang
,
K. P.
, and
Teng
,
H.
,
2005
, “
A Simplified Preparation of Mesoporous Carbon and the Examination of The Carbon Accessibility for Electric Double Layer Formation
,”
Carbon N. Y.
,
43
(
3
), pp.
559
566
. 10.1016/j.carbon.2004.10.020
50.
Zhao
,
Q.
,
Wang
,
X.
,
Xia
,
H.
,
Liu
,
J.
,
Wang
,
H.
,
Gao
,
J.
,
Zhang
,
Y.
,
Liu
,
J.
,
Zhou
,
H.
,
Li
,
X.
,
Zhang
,
S.
, and
Wang
,
X.
,
2015
, “
Design, Preparation and Performance of Novel Three-Dimensional Hierarchically Porous Carbon for Supercapacitors
,”
Electrochim. Acta
,
173
, pp.
566
574
. 10.1016/j.electacta.2015.05.096
51.
Peng
,
C.
,
Yan
,
X. B.
,
Wang
,
R. T.
,
Lang
,
J. W.
,
Ou
,
Y. J.
, and
Xue
,
Q. J.
,
2013
, “
Promising Activated Carbons Derived From Waste Tea-Leaves and Their Application in High Performance Supercapacitors Electrodes
,”
Electrochim. Acta
,
87
, pp.
401
408
. 10.1016/j.electacta.2012.09.082
52.
Wang
,
J.
, and
Kaskel
,
S.
,
2012
, “
KOH Activation of Carbon-Based Materials for Energy Storage
,”
J. Mater. Chem.
,
22
(
45
), pp.
23710
23725
. 10.1039/c2jm34066f
53.
Zhang
,
Y.
,
Yu
,
S.
,
Lou
,
G.
,
Shen
,
Y.
,
Chen
,
H.
,
Shen
,
Z.
,
Zhao
,
S.
,
Zhang
,
J.
,
Chai
,
S.
, and
Zou
,
Q.
,
2017
, “
Review of Macroporous Materials as Electrochemical Supercapacitor Electrodes
,”
J. Mater. Sci.
,
52
(
19
), pp.
11201
11228
. 10.1007/s10853-017-0955-3
54.
Bhoyate
,
S.
,
Ranaweera
,
C. K.
,
Zhang
,
C.
,
Morey
,
T.
,
Hyatt
,
M.
,
Kahol
,
P. K.
,
Ghimire
,
M.
,
Mishra
,
S. R.
, and
Gupta
,
R. K.
,
2017
, “
Eco-friendly and High Performance Supercapacitors for Elevated Temperature Applications Using Recycled Tea Leaves
,”
Glob. Challenges
,
1
(
8
), p.
1700063
. 10.1002/gch2.201700063
55.
Alvarez
,
S. A.
,
Blanco-Lopez
,
M. C.
,
Miranda-Ordieres
,
A. J.
,
Fuertes
,
A. B.
, and
Centeno
,
T. A.
,
2004
, “
Electrochemical Capacitor Performance of Mesoporous Carbons Obtained by Templating Technique
,”
Carbon N.Y.
,
43
(
4
), pp.
855
894
. 10.1016/j.carbon.2004.10.044
56.
Taer
,
E.
,
Afrianda
,
A.
,
Taslim
,
R.
,
Krisman
,
M.
,
Agustino
,
A.
,
Apriwandi
,
A.
, and
Malik
,
U.
,
2018
, “
The Physical and Electrochemical Properties of Activated Carbon Electrode Made From Terminalia Catappa Leaf (TCL) for Supercapacitor Cell Application
,”
J. Phys. Conf. Ser.
,
1120
(
1
), p.
012007
. 10.1088/1742-6596/1120/1/012007
57.
Taer
,
E.
,
Handayani
,
R.
,
Apriwandi
,
A.
,
Taslim
,
R.
,
Awitdrus
,
A.
,
Amun
,
A.
,
Agustino
,
A.
, and
Iwantono
,
I.
,
2019
, “
The Synthesis of Bridging Carbon Particles With Carbon Nanotubes From Areca Catechu Husk Waste as Supercapacitor Electrodes
,”
Int. J. Electrochem. Sci.
,
14
(
8
), pp.
9436
9448
. 10.20964/2019.10.34
58.
Bonino
,
F.
,
Brutti
,
S.
,
Reale
,
P.
,
Scrosati
,
B.
,
Gherghel
,
L.
,
Wu
,
J.
, and
Müllen
,
K.
,
2005
, “
A Disordered Carbon as a Novel Anode Material in Lithium-Ion Cells
,”
Adv. Mater.
,
17
(
6
), pp.
743
746
. 10.1002/adma.200401006
59.
Senthilkumar
,
S. T.
,
Senthilkumar
,
B.
,
Balaji
,
S.
,
Sanjeeviraja
,
C.
, and
Selvan
,
K. R.
,
2011
, “
Preparation of Activated Carbon From Sorghum Pith and Its Structural and Electrochemical Properties
,”
Mater. Res. Bull.
,
46
(
3
), pp.
413
419
. 10.1016/j.materresbull.2010.12.002
60.
Zhang
,
G. Q.
, and
Zhang
,
S. T.
,
2009
, “
Characterization and Electrochemical Applications of a Carbon With High Density of Surface Functional Groups Produced From Beer Yeast
,”
J. Solid State Electrochem.
,
13
(
6
), pp.
887
893
. 10.1007/s10008-008-0623-2
61.
Qu
,
D.
,
2002
, “
Studies of the Activated Mesocarbon Microbeads Used in Double-Layer Supercapacitors
,”
J. Power Sources
,
109
(
2
), pp.
403
411
. 10.1016/S0378-7753(02)00108-8
You do not currently have access to this content.