Abstract

An experimental study was carried out to quantify the influence of temperature and different C-rate of discharge on in-house fabricated lithium-ion (Li-ion) cell. A 30-Ah Li-ion cell is made of lithium iron phosphate (LFP) cathode and meso carbon microbeads (MCMB) anode in prismatic configuration. The capability of Li-ion cell is defined by discharge capacity, voltage, and power at different C-rate of discharge. Influence of 4 different current rates (C/5, C/2, 1C, and 2C) at 5 different temperatures (–20, 0, 20, 40, and 60 °C) were studied. High discharge rate increases the current density of cell which affect mass transport at electrode surface and electrolyte. Increased ohmic and concentration polarization at a high rate of discharge decrease the original capacity. The average discharge voltage of the cell is reduced gradually as operating temperature drops to below 20 °C. Electrochemical impedance (EI) were measured on Li-ion cell in the different frequency domain at different temperatures (–20, 0, 20, and 60 °C). The obtained impedance spectra were examined with an equivalent circuit using the Zman software. The ohmic and charge-transfer resistance displayed a solid dependence with respect to temperature.

References

1.
Srinivaskumar
,
A.
,
Satyavani
,
T. V. S. L.
, and
Senthilkumar
,
M.
,
2016
, “
Effect of Temperature and Charge Stand on Performance of Lithium-Ion Polymer Pouch Cell
,”
J. Energy Storage
,
6
(
1
), pp.
239
247
.
2.
Pesaran
,
A.
,
Santhanagopalan
,
S.
, and
Kim
,
G. H.
,
2013
, “
Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications
,”
Proceedings of the 30th International Battery Seminar
,
Ft. Lauderdale, FL
,
Nov. 3
.
3.
Yang
,
Z.
,
Huang
,
Q.
,
Li
,
S.
, and
Mao
,
J.
,
2018
, “
High-Temperature Effect on Electrochemical Performance of Li4Ti5O12 Based Anode Material for Li-Ion Batteries
,”
J. Alloy. Compd.
,
753
(
1
), pp.
192
202
.
4.
Finegan
,
D. P.
,
Darcy
,
E.
,
Keyser
,
M.
,
Tjaden
,
B.
,
Heenan
,
T. M. M.
,
Jervis
,
R.
,
Bailey
,
J. J.
,
Vo
,
N. T.
,
Magdysyuk
,
O. V.
,
Drakopoulos
,
M.
,
Michiel
,
M. D.
,
Rack
,
A.
,
Hinds
,
G.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2018
, “
Thermal Runaway: Identifying the Cause of Rupture of Li-Ion Batteries During Thermal Runaway
,”
Adv. Sci.
,
5
(
1
), p.
1870003
.
5.
He
,
F.
,
Li
,
X.
,
Zhang
,
G.
,
Zhong
,
G.
, and
He
,
J.
,
2018
, “
Experimental Investigation of Thermal Management System for Lithium Ion Batteries Module With Coupling Effect by Heat Sheets and Phase Change Materials
,”
Int. J. Energy Res.
,
42
(
10
), pp.
3279
3288
.
6.
Ren
,
D.
,
Smith
,
K.
,
Guo
,
D.
,
Han
,
X.
,
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
, and
Li
,
J.
,
2018
, “
Investigation of Lithium Plating-Stripping Process in Li-Ion Batteries at Low Temperature Using an Electrochemical Model
,”
J. Electrochem. Soc.
,
165
(
10
), pp.
A2167
A2178
.
7.
Lindgren
,
J.
, and
Lund
,
P. D.
,
2016
, “
Effect of Extreme Temperatures on Battery Charging and Performance of Electric Vehicles
,”
J. Power Sources
,
328
(
1
), pp.
37
45
.
8.
Hausmann
,
A.
, and
Depcik
,
C.
,
2013
, “
Expanding the Peukert Equation for Battery Capacity Modeling Through Inclusion of a Temperature Dependency
,”
J. Power Sources
,
235
(
1
), pp.
148
158
.
9.
Wu
,
Y.
,
Keil
,
P.
,
Schuster
,
S. F.
, and
Jossen
,
A.
,
2017
, “
Impact of Temperature and Discharge Rate on the Aging of a LiCoO2/LiNi0.8Co0.15Al0.05O2 Lithium-Ion Pouch Cell
,”
J. Electrochem. Soc.
,
165
(
7
), pp.
A1438
A1445
.
10.
Liaoa
,
L.
,
Zuoa
,
P.
,
Maa
,
Y.
,
Chena
,
X.
,
Ana
,
Y.
,
Gaoa
,
Y.
, and
Yina
,
G.
,
2012
, “
Effects of Temperature on Charge/Discharge Behaviors of LiFePO4 Cathode for Li-Ion Batteries
,”
Electrochim. Acta
,
60
(
1
), pp.
269
273
.
11.
Lin
,
C.
,
Xu
,
S.
,
Li
,
Z.
,
Li
,
B.
,
Chang
,
G.
, and
Liu
,
J.
,
2015
, “
Thermal Analysis of Large-Capacity LiFePO4 Power Batteries for Electric Vehicles
,”
J. Power Sources
,
294
(
1
), pp.
633
642
.
12.
Chen
,
K.
,
Unsworth
,
G.
, and
Li
,
X.
,
2014
, “
Measurements of Heat Generation in Prismatic Li-Ion Batteries
,”
J. Power Sources
,
261
(
1
), pp.
28
37
.
13.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2016
, “
Experimental and Simulated Temperature Variations in a LiFePO4-20Ah Battery During Discharge Process
,”
Appl. Energy
,
180
(
1
), pp.
504
515
.
14.
Xiao
,
L. F.
,
Cao
,
Y. L.
,
Ai
,
X. P.
, and
Yang
,
H. X.
,
2004
, “
Optimization of EC-Based Multi-solvent Electrolytes for Low Temperature Applications of Lithium-Ion Batteries
,”
Electrochim. Acta.
,
49
(
47
), pp.
4857
4863
.
15.
Azeez
,
F.
, and
Fedkiwb
,
P. S.
,
2010
, “
Conductivity of Libob-Based Electrolyte for Lithium-Ion Batteries
,”
J. Power Sources
,
195
(
22
), pp.
7627
7633
.
16.
Smart
,
M. C.
,
Ratnakumar
,
B. V.
,
Behar
,
A.
,
Whitcanack
,
L. D.
,
Yu
,
J. S.
, and
Alamgir
,
M.
,
2007
, “
Gel Polymer Electrolyte Lithium-Ion Cells With Improved Low Temperature Performance
,”
J. Power Sources
,
165
(
2
), pp.
535
543
.
17.
Plichta
,
E. J.
,
Hendrickson
,
M.
,
Thompson
,
R.
,
Au
,
G.
,
Behl
,
W. K.
,
Smart
,
M. C.
,
Ratnakumar
,
B. V.
, and
Surampudi
,
S.
,
2001
, “
Development of Low Temperature Li-Ion Electrolytes for NASA and DoD Applications
,”
J. Power Sources
,
94
(
2
), pp.
160
162
.
18.
Mandal
,
B. K.
,
Padhi
,
A. K.
,
Shi
,
Z.
,
Chakraborty
,
S.
, and
Filler
,
R.
,
2006
, “
New low Temperature Electrolytes With Thermal Runaway Inhibition for Lithium-ion Rechargeable Batteries
,”
J. Power Sources
,
162
(
1
), pp.
690
695
.
19.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2006
, “
Enhanced Performance of Li-Ion Cell With LiBF4-PC Based Electrolyte by Addition of Small Amount of LiBOB
,”
J. Power Sources
,
156
(
2
), pp.
629
633
.
20.
Li
,
J.
,
Xie
,
K.
,
Lai
,
Y.
,
Zhang
,
Z.
,
Li
,
F.
,
Hao
,
X.
,
Chen
,
X.
, and
Liu
,
Y.
,
2010
, “
Lithium Oxalyldifluoroborate/Carbonate Electrolytes for LiFePO4/Artificial Graphite Lithium-Ion Cells
,”
J. Power Sources
,
195
(
16
), pp.
5344
5350
.
21.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2006
, “
Charge and Discharge Characteristics of a Commercial LiCoO2-Based 18650 Li-ion Battery
,”
J. Power Sources
,
160
(
2
), pp.
1403
1409
.
22.
Padhi
,
A. K.
,
Nanjundaswamy
,
K. S.
, and
Goodenough
,
J. B.
,
1997
, “
Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
4
(
4
), pp.
1188
1194
.
23.
Alipour
,
M.
,
Esen
,
E.
, and
Kizilel
,
R.
,
2019
, “
Investigation of 3-D Multilayer Approach in Predicting the Thermal Behavior of 20 Ah Li-Ion Cells
,”
Appl. Therm. Eng.
,
153
(
1
), pp.
620
632
.
24.
Zhang
,
Y.
,
Wang
,
C.-Y.
, and
Tang
,
X.
,
2011
, “
Cycling Degradation of an Automotive LiFePO4 Lithium-Ion Battery
,”
J. Power Sources
,
196
(
3
), pp.
1513
1520
.
25.
Diard
,
J. P.
,
Gorrec
,
B. L.
, and
Montella
,
C.
,
1996
,
Cinétique Électrochimique
,
Hermann
,
Paris
.
26.
Jaguemont
,
J.
,
Boulon
,
L.
, and
Dubé
,
Y.
,
2016
, “
A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures
,”
Appl. Energy
,
164
(
1
), pp.
99
114
.
27.
Panchal
,
S.
,
Mcgrory
,
J.
,
Kong
,
J.
,
Fraser
,
R.
,
Fowler
,
M.
,
Dincer
,
I.
, and
Agelin-Chaab
,
M.
,
2017
, “
Cycling Degradation Testing and Analysis of a LiFePO4 Battery at Actual Conditions
,”
Int. J. Energy Res.
,
41
(
15
), pp.
2565
2575
.
28.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
3
), pp.
R1
R25
.
29.
Linden
,
D.
, and
Thomas
,
B. R.
,
2001
,
Handbook of Batteries and Fuel Cells
, 3rd ed.,
McGraw-Hill
,
New York
,
82
.
30.
Lua
,
Z.
,
Yua
,
X. L.
,
Weia
,
L. C.
,
Caoa
,
F.
,
Zhangb
,
L. Y.
,
Mengb
,
X. Z.
, and
Jinb
,
L. W.
,
2019
, “
A Comprehensive Experimental Study on Temperature-Dependent Performance of Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
158
(
1
), p.
113800
.
31.
Alipour
,
M.
,
Esen
,
E.
,
Varzeghani
,
A. R.
, and
Kizilel
,
R.
,
2020
, “
Performance of High Capacity Li-Ion Pouch Cells Over Wide Range of Operating Temperatures and Discharge Rates
,”
J. Electroanal. Chem.
,
860
(
1
), p.
113903
.
32.
Waldmann
,
T.
,
Wilka
,
M.
,
Kasper
,
M.
,
Fleischhammer
,
M.
, and
Wohlfahrt-Mehrens
,
M.
,
2014
, “
Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries—A Post-mortem Study
,”
J. Power Sources
,
262
(
1
), pp.
129
135
.
33.
Zhang
,
G.
,
Shaffer
,
C. E.
,
Wang
,
C.-Y.
, and
Rahn
,
C. D.
,
2013
, “
Effects of Non-uniform Current Distribution on Energy Density of Li-Ion Cells
,”
J. Electrochem. Soc.
,
160
(
11
), pp.
A2299
A2305
.
34.
Jaguemont
,
J.
,
Boulon
,
L.
,
Venet
,
P.
,
Dube
,
Y.
, and
Sari
,
A.
,
2016
, “
Lithium-Ion Battery Aging Experiments at Subzero Temperatures and Model Development for Capacity Fade Estimation
,”
IEEE Trans. Veh. Technol.
,
65
(
6
), pp.
4328
4343
.
35.
Wang
,
F.
,
Chen
,
J.
,
Tan
,
Z.
,
Wu
,
M.
,
Yi
,
B.
,
Su
,
W.
,
Wei
,
Z.
, and
Liu
,
S.
,
2014
, “
Low-Temperature Electrochemical Performances of LiFePO4 Cathode Materials for Lithium Ion Batteries
,”
J. Taiwan Inst. Chem. Eng.
,
45
(
4
), pp.
1321
1330
.
36.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2003
, “
The Low Temperature Performance of Li-Ion Batteries
,”
J. Power Sources
,
115
(
1
), pp.
137
140
.
37.
Keddam
,
M.
,
Stoynov
,
Z.
, and
Takenouti
,
H.
,
1977
, “
Impedance Measurement on Pb/H2SO4 Batteries
,”
J. Appl. Electrochem.
,
7
(
6
), pp.
539
544
.
38.
Suresh
,
P.
,
Shukla
,
A. K.
, and
Munichandraiah
,
N.
,
2002
, “
Temperature Dependence Studies of a.c. Impedance of Lithium-Ion Cells
,”
J. Appl. Electrochem.
,
32
(
3
), pp.
267
273
.
You do not currently have access to this content.