Abstract

In the battery management system (BMS), the state of charge (SOC) is a very influential factor, which can prevent overcharge and over-discharge of the lithium-ion battery (LIB). This paper proposed a battery modeling and online battery parameter identification method based on the Thevenin equivalent circuit model (ECM) and recursive least squares (RLS) algorithm with forgetting factor. The proposed model proved to have high accuracy. The error between the ECM terminal voltage value and the actual value basically fluctuates between ±0.1 V. The extended Kalman filter (EKF) algorithm and the unscented Kalman filter (UKF) algorithm were applied to estimate the SOC of the battery based on the proposed model. The SOC experimental results obtained under dynamic stress test (DST), federal urban driving schedule (FUDS), and US06 cycle conditions were analyzed. The maximum deviation of the SOC based on EKF was 1.4112–2.5988%, and the maximum deviation of the SOC based on UKF was 0.3172–0.3388%. The SOC estimation method based on UKF and RLS provides a smaller deviation and better adaptability in different working conditions, which makes it more implementable in a real-world automobile application.

References

1.
Hannan
,
M.
,
Lipu
,
M.
,
Hussain
,
A.
, and
Mohamed
,
A.
,
2017
, “
A Review of Lithium-ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
834
854
.
2.
Jaguemont
,
J.
,
Boulon
,
L.
, and
Dubé
,
Y.
,
2016
, “
A Comprehensive Review of Lithium-ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures
,”
Appl. Energy
,
164
, pp.
99
114
.
3.
Huangfu
,
Y.
,
Xu
,
J.
,
Zhao
,
D.
,
Liu
,
Y.
, and
Gao
,
F.
,
2018
, “
A Novel Battery State of Charge Estimation Method Based on a Super-Twisting Sliding Mode Observer
,”
Energies
,
11
(
5
), p.
1211
.
4.
Kong
,
S. N.
,
Moo
,
C. S.
,
Chen
,
Y. P.
, and
Hsieh
,
Y. C.
,
2009
, “
Enhanced Coulomb Counting Method for Estimating State-of-Charge and State-of-Health of Lithium-ion Batteries
,”
Appl. Energy
,
86
(
9
), pp.
1506
1511
.
5.
Zhang
,
Y.
,
Song
,
W.
,
Lin
,
S.
, and
Feng
,
Z.
,
2014
, “
A Novel Model of the Initial State of Charge Estimation for LiFePO4 Batteries
,”
J. Power Sources
,
248
, pp.
1028
1033
.
6.
Xing
,
Y.
,
He
,
W.
,
Pecht
,
M.
, and
Tsui
,
K. L.
,
2014
, “
State of Charge Estimation of Lithium-ion Batteries Using the Open-Circuit Voltage at Various Ambient Temperatures
,”
Appl. Energy
,
113
(
1
), pp.
106
115
.
7.
Westerhoff
,
U.
,
Kroker
,
T.
,
Kurbach
,
K.
, and
Kurrat
,
M.
,
2016
, “
Electrochemical Impedance Spectroscopy Based Estimation of the State of Charge of Lithium-ion Batteries
,”
J. Energy Storage
,
8
, pp.
244
256
.
8.
Stroe
,
D. L.
,
Knap
,
V.
,
Swierczynski
,
M. J.
,
Stanciu
,
T.
,
Schaltz
,
E.
, and
Teodorescu
,
R.
,
2016
, “
An Electrochemical Impedance Spectroscopy Study on a Lithium Sulfur Pouch Cell
,”
ECS Trans.
,
72
(
12
), pp.
13
22
.
9.
Guo
,
Y.
,
Zhao
,
Z.
, and
Huang
,
L.
,
2017
, “
SOC Estimation of Lithium Battery Based on Improved BP Neural Network
,”
Energy Procedia
,
105
, pp.
4153
4158
.
10.
Ephrem
,
C.
,
Kollmeyer
,
P. J.
,
Matthias
,
P.
, and
Ali
,
E.
,
2018
, “
State-of-Charge Estimation of li-ion Batteries Using Deep Neural Networks: A Machine Learning Approach
,”
J. Power Sources
,
400
, pp.
242
255
.
11.
Hong
,
J.
,
Wang
,
Z.
,
Chen
,
W.
, and
Yao
,
Y.
,
2019
, “
Synchronous Multi-Parameter Prediction of Battery Systems on Electric Vehicles Using Long Short-Term Memory Networks
,”
Appl. Energy
,
254
, p.
113648
.
12.
Burgos
,
C.
,
Sáez
,
D.
,
Orchard
,
M. E.
, and
Cárdenas
,
R.
,
2015
, “
Fuzzy Modelling for the State-of-Charge Estimation of Lead-Acid Batteries
,”
J. Power Sources
,
274
, pp.
355
366
.
13.
Hu
,
J.
,
Hu
,
J.
,
Lin
,
H.
,
Li
,
X.
,
Jiang
,
C.
,
Qiu
,
X.
, and
Li
,
W.
,
2014
, “
State-of-charge Estimation for Battery Management System Using Optimized Support Vector Machine for Regression
,”
J. Power Sources
,
269
, pp.
682
693
.
14.
Antón
,
J. C. A.
,
Nieto
,
P. J. G.
,
de Cos Juez
,
F. J.
,
Lasheras
,
F. S. S.
,
Viejo
,
C. B.
, and
Gutiérrez
,
N. R.
,
2013
, “
Battery State-of-Charge Estimator Using the SVM Technique
,”
IEEE Trans. Power Electron.
,
28
(
8
), pp.
3798
3805
.
15.
Akhoundzadeh
,
M. H.
,
Raahemifar
,
K.
,
Panchal
,
S.
,
Samadani
,
E.
,
Haghi
,
E.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2019
, “
A Conceptualized Hydrail Powertrain: a Case Study of the Union Pearson Express Route
,”
World Electr. Veh. J.
,
10
(
2
), p.
32
.
16.
Choudhari
,
V. G.
,
Dhoble
,
A. S.
, and
Panchal
,
S.
,
2020
, “
Numerical Analysis of Different fin Structures in Phase Change Material Module for Battery Thermal Management System and its Optimization
,”
Int. J. Heat Mass Transfer
,
163
, p.
120434
.
17.
Tran
,
M.-K.
,
Mevawala
,
A.
,
Panchal
,
S.
,
Raahemifar
,
K.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2020
, “
Effect of Integrating the Hysteresis Component to the Equivalent Circuit Model of Lithium-ion Battery for Dynamic and Non-Dynamic Applications
,”
J. Energy Storage
,
32
, p.
101785
.
18.
Qiu
,
Y.
,
Li
,
X.
,
Chen
,
W.
,
Duan
,
Z. M.
, and
Yu
,
L.
,
2019
, “
State of Charge Estimation of Vanadium Redox Battery Based on Improved Extended Kalman Filter
,”
ISA Trans.
,
94
, pp.
326
337
.
19.
Zhao
,
Y.
,
Xu
,
J.
,
Wang
,
X.
, and
Mei
,
X.
,
2018
, “
The Adaptive Fading Extended Kalman Filter soc Estimation Method for Lithium-ion Batteries
,”
Energy Procedia
,
145
, pp.
357
362
.
20.
Guo
,
F.
,
Hu
,
G.
,
Xiang
,
S.
,
Zhou
,
P.
,
Hong
,
R.
, and
Xiong
,
N.
,
2019
, “
A Multi-Scale Parameter Adaptive Method for State of Charge and Parameter Estimation of Lithium-ion Batteries Using Dual Kalman Filters
,”
Energy
,
178
, pp.
79
88
.
21.
Wang
,
L.
,
Lu
,
D.
,
Liu
,
Q.
,
Liu
,
L.
, and
Zhao
,
X.
,
2018
, “
State of Charge Estimation for LiFePO4 Battery via Dual Extended Kalman Filter and Charging Voltage Curve
,”
Electrochim. Acta
,
296
, pp.
1009
1017
.
22.
Zhu
,
Q.
,
Xu
,
M.
,
Liu
,
W.
, and
Zheng
,
M.
,
2019
, “
A State of Charge Estimation Method for Lithium-ion Batteries Based on Fractional Order Adaptive Extended Kalman Filter
,”
Energy
,
187
, p.
115880
.
23.
Xu
,
Y.
,
Hu
,
M.
,
Zhou
,
A.
,
Li
,
Y.
,
Li
,
S.
,
Fu
,
C.
, and
Gong
,
C.
,
2020
, “
State of Charge Estimation for Lithium-ion Batteries Based on Adaptive Dual Kalman Filter
,”
Appl. Math. Model.
,
77
(
2
), pp.
1255
1272
.
24.
Yu
,
X.
,
Wei
,
J.
,
Dong
,
G.
,
Chen
,
Z.
, and
Zhang
,
C.
,
2018
, “
State-of-charge Estimation Approach of Lithium-ion Batteries Using an Improved Extended Kalman Filter
,”
10th International Conference on Applied Energy
, Vol.
158
, pp.
5097
5102
.
25.
Liu
,
F.
,
Ma
,
J.
,
Su
,
W.
,
Chen
,
H.
, and
He
,
M.
,
2020
, “
Research on Parameter Self-Learning Unscented Kalman Filtering Algorithm and Its Application in Battery Charge of State Estimation
,”
Energies
,
13
(
7
), p.
1679
.
26.
Chen
,
Z.
,
Yang
,
L.
,
Zhao
,
X.
,
Wang
,
Y.
, and
He
,
Z.
,
2019
, “
Online State of Charge Estimation of Li-ion Battery Based on an Improved Unscented Kalman Filter Approach
,”
Appl. Math. Model.
,
70
, pp.
532
544
.
27.
Jianwang
,
H.
,
Ramirez-Mendoza
,
R. A.
, and
Lozoya-Santos
,
J. D. J.
,
2020
, “
Adjustable Scaling Parameters for State of Charge Estimation for Lithium-Ion Batteries Using Iterative Multiple UKFs
,”
Math. Probl. Eng.
,
2020
, pp.
1
14
.
28.
Liu
,
G.
,
Xu
,
C.
,
Li
,
H.
,
Jiang
,
K.
, and
Wang
,
K.
,
2019
, “
State of Charge and Online Model Parameters Co-Estimation for Liquid Metal Batteries
,”
Appl. Energy
,
250
, pp.
677
684
.
29.
Tian
,
Y.
,
Lai
,
R.
,
Li
,
X.
,
Xiang
,
L.
, and
Tian
,
J.
,
2020
, “
A Combined Method for State-of-Charge Estimation for Lithium-ion Batteries Using a Long Short-Term Memory Network and an Adaptive Cubature Kalman Filter
,”
Appl. Energy
,
265
, p.
114789
.
You do not currently have access to this content.