Abstract

Hydrothermally synthesized graphene (HRG) was tested for its supercapacitive behavior using nickel (Ni) and hydrothermally treated carbon cloth as current collectors, respectively. Performance evaluation studies were carried out in an in-house fabricated SS cell. Commercially obtained untreated carbon cloth (CCUn) was exfoliated via oxidation (CCOx) followed by hydrothermal treatment to obtain a reduced carbon cloth (CCHy). The physicochemical and electrochemical properties of carbon cloth by oxidative exfoliation and hydrothermal treatment have been studied using scanning electron microscope, X-ray diffraction, Fourier-transform infrared spectroscopy, and Brunauer–Emmett–Teller surface area, Contact angle measurements, cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and EIS. HRG coated on the CCHy (HRG-CCHy) had shown superior performance and endurance compared to HRG coated on Ni strip (HRG-Ni), with distinguishable specific capacitances (Cs) of 170 and 134 F g−1 at 0.5 A g−1 current density, respectively. At a higher 10 A g−1 current density, HRG-CCHy, and HRG-Ni have displayed distinctive specific capacitances of 120 and 80 F g−1, respectively, indicating a comparative decline in the performance of HRG-Ni with respect to HRG-CCHy. Endurance study performed for 5000 cycles at 2 A g−1, resulted in HRG-CCHy and HRG-Ni, retaining 88% and 81% of their initial-specific capacitances. At 1 kW kg−1 of power density, HRG-CCHy displayed a 5.5 Wh kg−1 of energy density. The electrochemical performance of HRG-CCHy may be attributed to exceptional properties like high wettability, low impedance, high pore volume, and specific surface area.

References

1.
Zsiborács
,
H.
,
Baranyai
,
N. H.
,
Vincze
,
A.
,
Zentkó
,
L.
,
Birkner
,
Z.
,
Máté
,
K.
, and
Pintér
,
G.
,
2019
, “
Intermittent Renewable Energy Sources: The Role of Energy Storage in the European Power System of 2040
,”
Electronics
,
8
(
7
), p.
729
.
2.
Koohi-Fayegh
,
S.
, and
Rosen
,
M. A.
,
2020
, “
A Review of Energy Storage Types, Applications and Recent Developments
,”
J. Energy Storage
,
27
, p.
101047
.
3.
Chandan
,
R. S.
,
Kiran
,
T. S.
,
Swapna
,
G.
, and
Muni
,
T. V.
,
2020
, “
Intelligent Control Strategy for Energy Management System With FC/Battery/SC
,”
J. Crit. Rev.
,
7
(
2
), pp.
344
348
.
4.
Afif
,
A.
,
Rahman
,
S. M.
,
Azad
,
A. T.
,
Zaini
,
J.
,
Islan
,
M. A.
, and
Azad
,
A. K.
,
2019
, “
Advanced Materials and Technologies for Hybrid Supercapacitors for Energy Storage–A Review
,”
J. Energy Storage
,
25
, p.
100852
.
5.
Noori
,
A.
,
El-Kady
,
M. F.
,
Rahmanifar
,
M. S.
,
Kaner
,
R. B.
, and
Mousavi
,
M. F.
,
2019
, “
Towards Establishing Standard Performance Metrics for Batteries, Supercapacitors and Beyond
,”
Chem. Soc. Rev.
,
48
(
5
), pp.
1272
1341
.
6.
Fileti
,
E. E.
,
2020
, “
Electric Double Layer Formation and Storing Energy Processes on Graphene-Based Supercapacitors From Electrical and Thermodynamic Perspectives
,”
J. Mol. Model.
,
26
(
6
), pp.
159
159
.
7.
Ho
,
K. C.
, and
Lin
,
L. Y.
,
2019
, “
A Review of Electrode Materials Based on Core–Shell Nanostructures for Electrochemical Supercapacitors
,”
J. Mater. Chem. A
,
7
(
8
), pp.
3516
3530
.
8.
Bokhari
,
S. W.
,
Siddique
,
A. H.
,
Sherrell
,
P. C.
,
Yue
,
X.
,
Karumbaiah
,
K. M.
,
Wei
,
S.
,
Ellis
,
A. V.
, and
Gao
,
W.
,
2020
, “
Advances in Graphene-Based Supercapacitor Electrodes
,”
Energy Rep.
,
6
, pp.
2768
2784
.
9.
Chen
,
X.
,
Paul
,
R.
, and
Dai
,
L.
,
2017
, “
Carbon-Based Supercapacitors for Efficient Energy Storage
,”
Natl. Sci. Rev.
,
4
(
3
), pp.
453
489
.
10.
Wang
,
B.
,
Ruan
,
T.
,
Chen
,
Y.
,
Jin
,
F.
,
Peng
,
L.
,
Zhou
,
Y.
,
Wang
,
D.
, and
Dou
,
S.
,
2020
, “
Graphene-Based Composites for Electrochemical Energy Storage
,”
Energy Storage Mater.
,
24
, pp.
22
51
.
11.
Kumar
,
S. S.
,
Ramakrishna
,
S. U. B.
,
Mahesh
,
K. N.
,
Devi
,
B. R.
, and
Himabindu
,
V.
,
2019
, “
Palladium Supported on Phosphorus–Nitrogen Dual-Doped Carbon Nanoparticles as Cathode for Hydrogen Evolution in PEM Water Electrolyser
,”
Ionics
,
25
(
6
), pp.
2615
2625
.
12.
Raccichini
,
R.
,
Varzi
,
A.
,
Passerini
,
S.
, and
Scrosati
,
B.
,
2015
, “
The Role of Graphene for Electrochemical Energy Storage
,”
Nat. Mater.
,
14
(
3
), pp.
271
279
.
13.
Cossutta
,
M.
,
Vretenar
,
V.
,
Centeno
,
T. A.
,
Kotrusz
,
P.
,
McKechnie
,
J.
, and
Pickering
,
S. J.
,
2020
, “
A Comparative Life Cycle Assessment of Graphene and Activated Carbon in a Supercapacitor Application
,”
J. Cleaner Prod.
,
242
, p.
118468
.
14.
Chen
,
Y.
,
Zhang
,
X.
,
Zhang
,
D.
,
Yu
,
P.
, and
Ma
,
Y.
,
2011
, “
High Performance Supercapacitors Based on Reduced Graphene Oxide in Aqueous and Ionic Liquid Electrolytes
,”
Carbon
,
49
(
2
), pp.
573
580
.
15.
Xu
,
B.
,
Yue
,
S.
,
Sui
,
Z.
,
Zhang
,
X.
,
Hou
,
S.
,
Cao
,
G.
, and
Yang
,
Y.
,
2011
, “
What is the Choice for Supercapacitors: Graphene or Graphene Oxide?
,”
Energy Environ. Sci.
,
4
(
8
), pp.
2826
2830
.
16.
Wang
,
Y.
,
Shi
,
Z.
,
Huang
,
Y.
,
Ma
,
Y.
,
Wang
,
C.
,
Chen
,
M.
, and
Chen
,
Y.
,
2009
, “
Supercapacitor Devices Based on Graphene Materials
,”
J. Phys. Chem. C
,
113
(
30
), pp.
13103
13107
.
17.
Lv
,
W.
,
Tang
,
D. M.
,
He
,
Y. B.
,
You
,
C. H.
,
Shi
,
Z. Q.
,
Chen
,
X. C.
,
Chen
,
C. M.
,
Hou
,
P. X.
,
Liu
,
C.
, and
Yang
,
Q. H.
,
2009
, “
Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage
,”
ACS Nano
,
3
(
11
), pp.
3730
3736
.
18.
Stoller
,
M. D.
,
Park
,
S.
,
Zhu
,
Y.
,
An
,
J.
, and
Ruoff
,
R. S.
,
2008
, “
Graphene-Based Ultracapacitors
,”
Nano Lett.
,
8
(
10
), pp.
3498
3502
.
19.
Zhong
,
Y. L.
,
Tian
,
Z.
,
Simon
,
G. P.
, and
Li
,
D.
,
2015
, “
Scalable Production of Graphene via Wet Chemistry: Progress and Challenges
,”
Mater. Today
,
18
(
2
), pp.
73
78
.
20.
Lee
,
J. W.
,
Ko
,
J. M.
, and
Kim
,
J. D.
,
2012
, “
Hydrothermal Preparation of Nitrogen-Doped Graphene Sheets via Hexamethylenetetramine for Application as Supercapacitor Electrodes
,”
Electrochim. Acta
,
85
, pp.
459
466
.
21.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Dommett
,
G. H.
,
Kohlhaas
,
K. M.
,
Zimney
,
E. J.
,
Stach
,
E. A.
,
Piner
,
R. D.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2006
, “
Graphene-Based Composite Materials
,”
Nature
,
442
(
7100
), pp.
282
286
.
22.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Piner
,
R. D.
,
Kohlhaas
,
K. A.
,
Kleinhammes
,
A.
,
Jia
,
Y.
,
Wu
,
Y.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2007
, “
Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide
,”
Carbon
,
45
(
7
), pp.
1558
1565
.
23.
Lin
,
Z.
,
Liu
,
Y.
,
Yao
,
Y.
,
Hildreth
,
O. J.
,
Li
,
Z.
,
Moon
,
K.
, and
Wong
,
C. P.
,
2011
, “
Superior Capacitance of Functionalized Graphene
,”
J. Phys. Chem. C
,
115
(
14
), pp.
7120
7125
.
24.
Zhu
,
Y.
,
Stoller
,
M. D.
,
Cai
,
W.
,
Velamakanni
,
A.
,
Piner
,
R. D.
,
Chen
,
D.
, and
Ruoff
,
R. S.
,
2010
, “
Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets
,”
ACS Nano
,
4
(
2
), pp.
1227
1233
.
25.
Díez
,
N.
,
Śliwak
,
A.
,
Gryglewicz
,
S.
,
Grzyb
,
B.
, and
Gryglewicz
,
G.
,
2015
, “
Enhanced Reduction of Graphene Oxide by High-Pressure Hydrothermal Treatment
,”
RSC Adv.
,
5
(
100
), pp.
81831
81837
.
26.
Zhou
,
J.
,
Lian
,
J.
,
Hou
,
L.
,
Zhang
,
J.
,
Gou
,
H.
,
Xia
,
M.
,
Zhao
,
Y.
,
Strobel
,
T. A.
,
Tao
,
L.
, and
Gao
,
F.
,
2015
, “
Ultrahigh Volumetric Capacitance and Cyclic Stability of Fluorine and Nitrogen Co-doped Carbon Microspheres
,”
Nat. Commun.
,
6
(
1
), p.
8503
.
27.
Rasul
,
S.
,
Alazmi
,
A.
,
Jaouen
,
K.
,
Hedhili
,
M. N.
, and
Costa
,
P. M. F. J.
,
2017
, “
Rational Design of Reduced Graphene Oxide for Superior Performance of Supercapacitor Electrodes
,”
Carbon
,
111
, pp.
774
781
.
28.
Alazmi
,
A.
,
El Tall
,
O.
,
Rasul
,
S.
,
Hedhili
,
M. N.
,
Patole
,
S. P.
, and
Costa
,
P. M.
,
2016
, “
A Process to Enhance the Specific Surface Area and Capacitance of Hydrothermally Reduced Graphene Oxide
,”
Nanoscale
,
8
(
41
), pp.
17782
17787
.
29.
Johra
,
F. T.
, and
Jung
,
W. G.
,
2015
, “
Hydrothermally Reduced Graphene Oxide as a Supercapacitor
,”
Appl. Surf. Sci.
,
357
, pp.
1911
1914
.
30.
Li
,
Z.
,
Wang
,
J.
,
Liu
,
S.
,
Liu
,
X.
, and
Yang
,
S.
,
2011
, “
Synthesis of Hydrothermally Reduced Graphene/Mno2 Composites and Their Electrochemical Properties as Supercapacitors
,”
J. Power Sources
,
196
(
19
), pp.
8160
8165
.
31.
Bai
,
Y.
,
Rakhi
,
R. B.
,
Chen
,
W.
, and
Alshareef
,
H. N.
,
2013
, “
Effect of pH-Induced Chemical Modification of Hydrothermally Reduced Graphene Oxide on Supercapacitor Performance
,”
J. Power Sources
,
233
, pp.
313
319
.
32.
Mackanic
,
D. G.
,
Chang
,
T. H.
,
Huang
,
Z.
,
Cui
,
Y.
, and
Bao
,
Z.
,
2020
, “
Stretchable Electrochemical Energy Storage Devices
,”
Chem. Soc. Rev.
,
49
(
13
), pp.
4466
4495
.
33.
Arvani
,
M.
,
Keskinen
,
J.
,
Lupo
,
D.
, and
Honkanen
,
M.
,
2020
, “
Current Collectors for Low Resistance Aqueous Flexible Printed Supercapacitors
,”
J. Energy Storage
,
29
, p.
101384
.
34.
Mishra
,
A.
,
Shetti
,
N. P.
,
Basu
,
S.
,
Raghava Reddy
,
K.
, and
Aminabhavi
,
T. M.
,
2019
, “
Carbon Cloth-Based Hybrid Materials as Flexible Electrochemical Supercapacitors
,”
ChemElectroChem
,
6
(
23
), pp.
5771
5786
.
35.
Zhou
,
X.
,
Chen
,
Q.
,
Wang
,
A.
,
Xu
,
J.
,
Wu
,
S.
, and
Shen
,
J.
,
2016
, “
Bamboo-Like Composites of V2O5/Polyindole and Activated Carbon Cloth as Electrodes for All-Solid-State Flexible Asymmetric Supercapacitors
,”
ACS Appl. Mater. Interfaces
,
8
(
6
), pp.
3776
3783
.
36.
Gineys
,
M.
,
Benoit
,
R.
,
Cohaut
,
N.
,
Béguin
,
F.
, and
Delpeux-Ouldriane
,
S.
,
2017
, “
Behavior of Activated Carbon Cloths Used as Electrode in Electrochemical Processes
,”
Chem. Eng. J.
,
310
, pp.
1
12
.
37.
Lv
,
X.
,
Huang
,
W.
,
Shi
,
Q.
,
Tang
,
L.
, and
Zhou
,
D.
,
2020
, “
Hydrothermal Activated Carbon Cloth as Electrode Materials for Symmetric Supercapacitors
,”
Ionics
,
26
(
3
), pp.
1457
1464
.
38.
Chodankar
,
N. R.
,
Ji
,
S. H.
, and
Kim
,
D. H.
,
2018
, “
Surface Modified Carbon Cloth via Nitrogen Plasma for Supercapacitor Applications
,”
J. Electrochem. Soc.
,
165
(
11
), pp.
A2446
A2450
.
39.
Ye
,
D.
,
Yu
,
Y.
,
Tang
,
J.
,
Liu
,
L.
, and
Wu
,
Y.
,
2016
, “
Electrochemical Activation of Carbon Cloth in Aqueous Inorganic Salt Solution for Superior Capacitive Performance
,”
Nanoscale
,
8
(
19
), pp.
10406
10414
.
40.
Wang
,
W.
,
Liu
,
W.
,
Zeng
,
Y.
,
Han
,
Y.
,
Yu
,
M.
,
Lu
,
X.
, and
Tong
,
Y.
,
2015
, “
A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth
,”
Adv. Mater.
,
27
(
23
), pp.
3572
3578
.
41.
Wang
,
G.
,
Wang
,
H.
,
Lu
,
X.
,
Ling
,
Y.
,
Yu
,
M.
,
Zhai
,
T.
,
Tong
,
Y.
, and
Li
,
Y.
,
2014
, “
Solid-State Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability
,”
Adv. Mater.
,
26
(
17
), pp.
2676
2682
.
42.
Jiang
,
S.
,
Shi
,
T.
,
Zhan
,
X.
,
Long
,
H.
,
Xi
,
S.
,
Hu
,
H.
, and
Tang
,
Z.
,
2014
, “
High-Performance All-Solid-State Flexible Supercapacitors Based on Two-Step Activated Carbon Cloth
,”
J. Power Sources
,
272
, pp.
16
23
.
43.
Nakayama
,
M.
,
Komine
,
K.
, and
Inohara
,
D.
,
2016
, “
Nitrogen-Doped Carbon Cloth for Supercapacitors Prepared via a Hydrothermal Process
,”
J. Electrochem. Soc.
,
163
(
10
), pp.
A2428
A2434
.
44.
Xu
,
Z.
,
Sun
,
S.
,
Cui
,
W.
,
Yu
,
D.
, and
Deng
,
J.
,
2018
, “
Ultrafine MnO2 Nanowires Grown on RGO-Coated Carbon Cloth as a Binder-Free and Flexible Supercapacitor Electrode With High Performance
,”
RSC Adv.
,
8
(
67
), pp.
38631
38640
.
45.
Jeon
,
H.
,
Jeong
,
J. M.
,
Hong
,
S. B.
,
Yang
,
M.
,
Park
,
J.
,
Hwang
,
S. Y.
, and
Choi
,
B. G.
,
2018
, “
Facile and Fast Microwave-Assisted Fabrication of Activated and Porous Carbon Cloth Composites With Graphene and Mno2 for Flexible Asymmetric Supercapacitors
,”
Electrochim. Acta
,
280
, pp.
9
16
.
46.
Chen
,
Z.
,
Liao
,
W.
, and
Ni
,
X.
,
2017
, “
Spherical Polypyrrole Nanoparticles Growing on the Reduced Graphene Oxide-Coated Carbon Cloth for High Performance and Flexible All-Solid-State Supercapacitors
,”
Chem. Eng. J.
,
327
, pp.
1198
1207
.
47.
Wen
,
L.
,
Li
,
K.
,
Liu
,
J.
,
Huang
,
Y.
,
Bu
,
F.
,
Zhao
,
B.
, and
Xu
,
Y.
,
2017
, “
Graphene/Polyaniline@ Carbon Cloth Composite as a High-Performance Flexible Supercapacitor Electrode Prepared by a One-Step Electrochemical Co-deposition Method
,”
RSC Adv.
,
7
(
13
), pp.
7688
7693
.
48.
Bazan-Aguilar
,
A.
,
Ponce-Vargas
,
M.
,
Caycho
,
C. L.
,
La Rosa-Toro
,
A.
, and
Baena-Moncada
,
A. M.
,
2020
, “
Highly Porous Reduced Graphene Oxide-Coated Carbonized Cotton Fibers as Supercapacitor Electrodes
,”
ACS Omega
,
5
(
50
), pp.
32149
32159
.
49.
Wang
,
Y.
,
Tang
,
S.
,
Vongehr
,
S.
,
Syed
,
J. A.
,
Wang
,
X.
, and
Meng
,
X.
,
2016
, “
High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites
,”
Sci. Rep.
,
6
(
1
), pp.
1
10
.
50.
Paulchamy
,
B.
,
Arthi
,
G.
, and
Lignesh
,
B. D.
,
2015
, “
A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial
,”
J. Nanomed. Nanotechnol.
,
6
(
1
), p.
1
.
51.
Wang
,
H.
,
Yi
,
H.
,
Chen
,
X.
, and
Wang
,
X.
,
2014
, “
Asymmetric Supercapacitors Based on Nano-architectured Nickel Oxide/Graphene Foam and Hierarchical Porous Nitrogen-Doped Carbon Nanotubes With Ultrahigh-Rate Performance
,”
J. Mater. Chem. A
,
2
(
9
), pp.
3223
3230
.
52.
Su
,
F.
,
Yao
,
R.
,
Li
,
T.
, and
Huang
,
P.
,
2017
, “
Oxidation of Carbon Fiber and Its Effect on Mechanical Properties
,”
Proceedings of 21st International Conference on Composite Materials
,
Xi'an, China
, Paper No. 3106.
53.
Chen
,
Z.
,
Zheng
,
L.
,
Zhu
,
T.
,
Ma
,
Z.
,
Yang
,
Y.
,
Wei
,
C.
, and
Gong
,
X.
,
2019
, “
All-Solid-State Flexible Asymmetric Supercapacitors Fabricated by the Binder-Free Hydrophilic Carbon Cloth@ MnO2 and Hydrophilic Carbon Cloth@ Polypyrrole Electrodes
,”
Adv. Electron. Mater.
,
5
(
3
), p.
1800721
.
54.
Yu
,
H.
,
Zhu
,
C.
,
Zhang
,
K.
,
Chen
,
Y.
,
Li
,
C.
,
Gao
,
P.
, and
Ouyang
,
Q.
,
2014
, “
Three-Dimensional Hierarchical MoS2 Nanoflake Array/Carbon Cloth as High-Performance Flexible Lithium-Ion Battery Anodes
,”
J. Mater. Chem. A
,
2
(
13
), pp.
4551
4557
.
55.
Cheng
,
S.
,
DelaCruz
,
S.
,
Chen
,
C.
,
Tang
,
Z.
,
Shi
,
T.
,
Carraro
,
C.
, and
Maboudian
,
R.
,
2019
, “
Hierarchical Co3O4/CuO Nanorod Array Supported on Carbon Cloth for Highly Sensitive Non-enzymatic Glucose Biosensing
,”
Sens. Actuators, B
,
298
, p.
126860
.
56.
Peyvandi
,
A.
,
Soroushian
,
P.
,
Abdol
,
N.
, and
Balachandra
,
A. M.
,
2013
, “
Surface-Modified Graphite Nanomaterials for Improved Reinforcement Efficiency in Cementitious Paste
,”
Carbon
,
63
, pp.
175
186
.
57.
Cheng
,
M. M.
,
Huang
,
L. J.
,
Wang
,
Y. X.
,
Zhao
,
Y. C.
,
Tang
,
J. G.
,
Wang
,
Y.
, and
Wickramasinghe
,
S. R.
,
2019
, “
Synthesis of Graphene Oxide/Polyacrylamide Composite Membranes for Organic Dyes/Water Separation in Water Purification
,”
J. Mater. Sci.
,
54
(
1
), pp.
252
264
.
58.
Nandiyanto
,
A. B. D.
,
Oktiani
,
R.
, and
Ragadhita
,
R.
,
2019
, “
How to Read and Interpret FTIR Spectroscope of Organic Material
,”
Indones. J. Sci. Technol.
,
4
(
1
), pp.
97
118
.
59.
Fernández-Merino
,
M. J.
,
Guardia
,
L.
,
Paredes
,
J. I.
,
Villar-Rodil
,
S.
,
Solís-Fernández
,
P.
,
Martínez-Alonso
,
A.
, and
Tascón
,
J. M. D.
,
2010
, “
Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions
,”
J. Phys. Chem. C
,
114
(
14
), pp.
6426
6432
.
60.
Fan
,
C. F.
,
Chien
,
Y. C.
,
Hsu
,
C. C.
,
Cheng
,
I. C.
,
Chien
,
L. H.
, and
Chen
,
J. Z.
,
2019
, “
Flexible Reduced Graphene Oxide Supercapacitors Processed Using Atmospheric-Pressure Plasma Jet Under Various Temperatures Adjusted by Flow Rate and Jet-Substrate Distance
,”
Mater. Res. Express
,
7
(
1
), p.
015602
.
61.
Guo
,
G.
,
Shen
,
L.
,
Li
,
X.
,
Cao
,
Y.
,
Sun
,
Y.
, and
Xiong
,
Z.
,
2020
, “
Tunable Reduction Degree of Stacked Lamellar RGO Film for Application in Flexible All-Solid-State Supercapacitors
,”
Diamond Relat. Mater.
,
106
, p.
107845
.
62.
Zhu
,
Y.
,
Murali
,
S.
,
Cai
,
W.
,
Li
,
X.
,
Suk
,
J. W.
,
Potts
,
J. R.
, and
Ruoff
,
R. S.
,
2010
, “
Graphene and Graphene Oxide: Synthesis, Properties, and Applications
,”
Adv. Mater.
,
22
(
35
), pp.
3906
3924
.
63.
Liu
,
T.
,
Wang
,
K.
,
Chen
,
Y.
,
Zhao
,
S.
, and
Han
,
Y.
,
2019
, “
Dominant Role of Wettability in Improving the Specific Capacitance
,”
Green Energy Environ.
,
4
(
2
), pp.
171
179
.
64.
Lu
,
X.
,
Zeng
,
Y.
,
Yu
,
M.
,
Zhai
,
T.
,
Liang
,
C.
,
Xie
,
S.
,
Balogun
,
M. S.
, and
Tong
,
Y.
,
2014
, “
Oxygen-Deficient Hematite Nanorods as High-Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors
,”
Adv. Mater.
,
26
(
19
), pp.
3148
3155
.
65.
Yoon
,
S. B.
,
Jegal
,
J. P.
,
Roh
,
K. C.
, and
Kim
,
K. B.
,
2014
, “
Electrochemical Impedance Spectroscopic Investigation of Sodium Ion Diffusion in MnO2 Using a Constant Phase Element Active in Desired Frequency Ranges
,”
J. Electrochem. Soc.
,
161
(
4
), pp.
H207
H213
.
66.
Huang
,
C. W.
, and
Teng
,
H.
,
2008
, “
Influence of Carbon Nanotube Grafting on the Impedance Behavior of Activated Carbon Capacitors
,”
J. Electrochem. Soc.
,
155
(
10
), p.
A739
.
67.
Gamby
,
J.
,
Taberna
,
P. L.
,
Simon
,
P.
,
Fauvarque
,
J. F.
, and
Chesneau
,
M.
,
2001
, “
Studies and Characterisations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors
,”
J. Power Sources
,
101
(
1
), pp.
109
116
.
68.
Wang
,
K. P.
, and
Teng
,
H.
,
2007
, “
Structural Feature and Double-Layer Capacitive Performance of Porous Carbon Powder Derived From Polyacrylonitrile-Based Carbon Fiber
,”
J. Electrochem. Soc.
,
154
(
11
), p.
A993
.
69.
Xiao
,
J.
, and
Yang
,
S.
,
2012
, “
Bio-inspired Synthesis of Nacl-Type CoXNi1−XO (0 ≤ X < 1) Nanorods on Reduced Graphene Oxide Sheets and Screening for Asymmetric Electrochemical Capacitors
,”
J. Mater. Chem.
,
22
(
24
), pp.
12253
12262
.
70.
Zhang
,
K.
,
Qin
,
F.
,
Fang
,
J.
,
Li
,
Q.
,
Jia
,
M.
,
Lai
,
Y.
,
Zhang
,
Z.
, and
Li
,
J.
,
2014
, “
Nickel Foam as Interlayer to Improve the Performance of Lithium–Sulfur Battery
,”
J. Solid State Electrochem.
,
18
(
4
), pp.
1025
1029
.
You do not currently have access to this content.