Abstract

This paper presents an experimental study on the performance of a reverse electrodialysis (RED) stack for SELEMION, ASTOM, and FUJI membranes with the cell pair number from 3 to 15 and flowrate from 5 to 60 L/h over a wide solution concentration range from 1 to 120 g/L. Direct current and alternate current measurements are employed to identify quantitatively the contribution of ohmic and non-ohmic resistances to the stack total resistance and then, the power output is predicted theoretically. The results show that the ohmic resistance dominates in the stack total resistance and accounts for about 90%. The factors such as the membrane type, cell pair, solution concentration, and flowrate have a considerable impact on the power generation process of RED. Especially, simultaneously increasing the high concentration (HC) and low concentration (LC) solution concentrations is more conducive to suppressing the concentration polarization when compared with increasing HC solution concentration alone. Although the concentration polarization maintains declining with the increase in flowrate, the flowrate should not be too large in order to harvest the highest power output by reason of serious tangential flow at higher flowrates. The optimal performance of RED stack is obtained when SELEMION membranes are used with cell pairs of 5, HC–LC solution concentration of 120-4 g/L and feed flowrate of 20 L/h.

References

1.
Mehdizadeh
,
S.
,
Yasukawa
,
M.
,
Suzuki
,
T.
, and
Higa
,
M.
,
2020
, “
Reverse Electrodialysis for Power Generation Using Seawater/Municipal Wastewater: Effect of Coagulation Pretreatment
,”
Desalination
,
481
, p.
114356
.
2.
Mei
,
Y.
, and
Tang
,
C. Y.
,
2018
, “
Recent Developments and Future Perspectives of Reverse Electrodialysis Technology: A Review
,”
Desalination
,
425
, pp.
156
174
.
3.
Lacey
,
R. E.
,
1980
, “
Energy by Reverse Electrodialysis
,”
Ocean Eng.
,
7
(
1
), pp.
1
47
.
4.
Hong
,
J. G.
, and
Park
,
T. W.
,
2018
, “
Electrochemical Characterizations and Reverse Electrodialysis Performance of Hybrid Anion Exchange Membranes for Salinity Gradient Energy
,”
J. Electroanal. Chem.
,
817
, pp.
134
140
.
5.
Hong
,
J. G.
,
Zhang
,
B.
,
Glabman
,
S.
,
Uzal
,
N.
,
Dou
,
X.
,
Zhang
,
H.
,
Wei
,
X.
, and
Chen
,
Y.
,
2015
, “
Potential Ion Exchange Membranes and System Performance in Reverse Electrodialysis for Power Generation: A Review
,”
J. Membr. Sci.
,
486
, pp.
71
88
.
6.
Długołęcki
,
P.
,
Ogonowski
,
P.
,
Metz
,
S. J.
,
Saakes
,
M.
,
Nijmeijer
,
K.
, and
Wessling
,
M.
,
2010
, “
On the Resistances of Membrane, Diffusion Boundary Layer and Double Layer in Ion Exchange Membrane Transport
,”
J. Membr. Sci.
,
349
(
1–2
), pp.
369
379
.
7.
Vermaas
,
D. A.
,
Saakes
,
M.
, and
Nijmeijer
,
K.
,
2011
, “
Power Generation Using Profiled Membranes in Reverse Electrodialysis
,”
J. Membr. Sci.
,
385
, pp.
234
242
.
8.
Vermaas
,
D. A.
,
Saakes
,
M.
, and
Nijmeijer
,
K.
,
2014
, “
Early Detection of Preferential Channeling in Reverse Electrodialysis
,”
Electrochim. Acta
,
117
, pp.
9
17
.
9.
Vermaas
,
D. A.
,
Saakes
,
M.
, and
Nijmeijer
,
K.
,
2011
, “
Doubled Power Density From Salinity Gradients at Reduced Intermembrane Distance
,”
Environ. Sci. Technol.
,
45
(
16
), pp.
7089
7095
.
10.
Vermaas
,
D. A.
,
Saakes
,
M.
, and
Nijmeijer
,
K.
,
2014
, “
Enhanced Mixing in the Diffusive Boundary Layer for Energy Generation in Reverse Electrodialysis
,”
J. Membr. Sci.
,
453
, pp.
312
319
.
11.
Galama
,
A. H.
,
Vermaas
,
D. A.
,
Veerman
,
J.
,
Saakes
,
M.
,
Rijnaarts
,
H.
,
Post
,
J. W.
, and
Nijmeijer
,
K.
,
2014
, “
Membrane Resistance: The Effect of Salinity Gradients Over a Cation Exchange Membrane
,”
J. Membr. Sci.
,
467
, pp.
279
291
.
12.
Hong
,
J. G.
, and
Chen
,
Y.
,
2014
, “
Nanocomposite Reverse Electrodialysis (RED) Ion-Exchange Membranes for Salinity Gradient Power Generation
,”
J. Membr. Sci.
,
460
(
12
), pp.
139
147
.
13.
Güler
,
E.
,
Elizen
,
R.
,
Vermaas
,
D. A.
,
Saakes
,
M.
, and
Nijmeijer
,
K.
,
2013
, “
Performance-Determining Membrane Properties in Reverse Electrodialysis
,”
J. Membr. Sci.
,
446
, pp.
266
276
.
14.
Veerman
,
J.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2009
, “
Reverse Electrodialysis: Performance of a Stack With 50 Cells on the Mixing of Sea and River Water
,”
J. Membr. Sci.
,
327
(
1–2
), pp.
136
144
.
15.
Veerman
,
J.
,
Post
,
J. W.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2008
, “
Reducing Power Losses Caused by Ionic Shortcut Currents in Reverse Electrodialysis Stacks by a Validated Model
,”
J. Membr. Sci.
,
310
(
1–2
), pp.
418
430
.
16.
Zhu
,
X.
,
He
,
W.
, and
Logan
,
B. E.
,
2015
, “
Influence of Solution Concentration and Salt Types on the Performance of Reverse Electrodialysis Cells
,”
J. Membr. Sci.
,
494
, pp.
154
160
.
17.
Zhu
,
X.
,
He
,
W.
, and
Logan
,
B. E.
,
2015
, “
Reducing Pumping Energy by Using Different Flow Rates of High and Low Concentration Solutions in Reverse Electrodialysis Cells
,”
J. Membr. Sci.
,
486
, pp.
215
221
.
18.
Ortiz-Imedio
,
R.
,
Gomez-Coma
,
L.
,
Fallanza
,
M.
,
Ortiz
,
A.
,
Ibañez
,
R.
, and
Ortiz
,
I.
,
2019
, “
Comparative Performance of Salinity Gradient Power-Reverse Electrodialysis Under Different Operating Conditions
,”
Desalination
,
457
, pp.
8
21
.
19.
Daniilidis
,
A.
,
Vermaas
,
D. A.
,
Herber
,
R.
, and
Nijmeijer
,
K.
,
2014
, “
Experimentally Obtainable Energy From Mixing River Water, Seawater or Brines With Reverse Electrodialysis
,”
Renew. Energy
,
64
, pp.
123
131
.
20.
Gurreri
,
L.
,
Tamburini
,
A.
,
Cipollina
,
A.
,
Micale
,
G.
, and
Ciofalo
,
M.
,
2014
, “
CFD Prediction of Concentration Polarization Phenomena in Spacer-Filled Channels for Reverse Electrodialysis
,”
J. Membr. Sci.
,
468
, pp.
133
148
.
21.
Moya
,
A. A.
,
2016
, “
Numerical Simulation of Ionic Transport Processes Through Bilayer Ion-Exchange Membranes in Reverse Electrodialysis Stacks
,”
J. Membr. Sci.
,
524
, pp.
400
408
.
22.
Krol
,
J. J.
,
Wessling
,
M.
, and
Strathmann
,
H.
,
1999
, “
Concentration Polarization With Monopolar Ion Exchange Membranes: Current–Voltage Curves and Water Dissociation
,”
J. Membr. Sci.
,
162
(
1–2
), pp.
145
154
.
23.
Fontananova
,
E.
,
Zhang
,
W.
,
Nicotera
,
I.
,
Simari
,
C.
,
van Baak
,
W.
,
Di Profio
,
G.
,
Curcio
,
E.
, and
Drioli
,
E.
,
2014
, “
Probing Membrane and Interface Properties in Concentrated Electrolyte Solutions
,”
J. Membr. Sci.
,
459
(
3
), pp.
177
189
.
24.
Wagner
,
N.
, and
Friedrich
,
K. A.
,
2010
, “
Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization: PEFC and Oxygen Reduction Reaction in Alkaline Solution
,”
Fuel Cells
,
9
(
3
), pp.
237
246
.
25.
Mosbaek
,
R. R.
,
Hjelm
,
J.
,
Barfod
,
R.
,
Hogh
,
J.
, and
Hendriksen
,
P. V.
,
2013
, “
Electrochemical Characterization and Degradation Analysis of Large SOFC Stacks by Impedance Spectroscopy
,”
Fuel Cells
,
13
(
4
), pp.
605
611
.
26.
Kashyap
,
D.
,
Dwivedi
,
P. K.
,
Pandey
,
J. K.
,
Kim
,
Y. H.
,
Kim
,
J. M.
,
Sharma
,
A.
, and
Goel
,
S.
,
2014
, “
Application of Electrochemical Impedance Spectroscopy in Bio-Fuel Cell Characterization: A Review
,”
Int. J. Hydrogen Energy
,
39
(
35
), pp.
20159
20170
.
27.
Avci
,
A. H.
,
Tufa
,
R. A.
,
Fontananova
,
E.
,
Di Profio
,
G.
, and
Curcio
,
E.
,
2018
, “
Reverse Electrodialysis for Energy Production From Natural River Water and Seawater
,”
Energy
,
165
, pp.
512
521
.
28.
Choi
,
I.
,
Han
,
J. Y.
,
Yoo
,
S. J.
,
Henkensmeier
,
D.
,
Kim
,
J. Y.
,
Lee
,
S. Y.
,
Han
,
J.
,
Nam
,
S. W.
,
Kim
,
H.-J.
, and
Jang
,
J. H.
,
2016
, “
Experimental Investigation of Operating Parameters in Power Generation by Lab-Scale Reverse Electro-Dialysis (RED)
,”
Bull. Korean Chem. Soc.
,
37
(
7
), pp.
1010
1019
.
29.
Pintossi
,
D.
,
Saakes
,
M.
,
Borneman
,
Z.
, and
Nijmeijer
,
K.
,
2019
, “
Electrochemical Impedance Spectroscopy of a Reverse Electrodialysis Stack: A New Approach to Monitoring Fouling and Cleaning
,”
J. Power Sources
,
444
, p.
227302
.
30.
Post
,
J. W.
,
Hamelers
,
H. V. M.
, and
Buisman
,
C. J. N.
,
2008
, “
Energy Recovery From Controlled Mixing Salt and Fresh Water With a Reverse Electrodialysis System
,”
Environ. Sci. Technol.
,
42
(
15
), pp.
5785
5790
.
31.
Tufa
,
R. S.
,
Curcio
,
E.
,
Vanbaak
,
W.
,
Veerman
,
J.
,
Grasman
,
S.
,
Fontananova
,
E.
, and
Diprofio
,
G.
,
2014
, “
Potential of Brackish Water and Brine for Energy Generation by Salinity Gradient Power-Reverse Electrodialysis (SGP-RE)
,”
RSC Adv.
,
4
(
80
), pp.
42617
42623
.
32.
Vermaas
,
D. A.
,
Guler
,
E.
,
Saakes
,
M.
, and
Nijmeijer
,
K.
,
2012
, “
Theoretical Power Density From Salinity Gradients Using Reverse Electrodialysis
,”
Energy Procedia
,
20
(
5
), pp.
170
184
.
33.
Weinstein
,
J. N.
, and
Leitz
,
F. B.
,
1976
, “
Electric Power From Differences in Salinity: The Dialytic Battery
,”
Science
,
191
(
4227
), pp.
557
559
.
34.
Xu
,
S.
,
Zhang
,
K.
,
Wu
,
X.
,
Wu
,
D.
,
Hu
,
J.
,
He
,
Q.
,
Jin
,
D.
, and
Wang
,
P.
,
2018
, “
Influence of Current Density and Concentration Difference Between Solutions on Mass Transfer in Reverse Electro-Dialysis Stack
,”
CIESC J.
,
69
(
10
), pp.
4206
4215
.
You do not currently have access to this content.