Abstract

Heteroatom doping is an effective modification to improve electrochemical performance of carbon materials as electrodes in storage devices and multi-doping works better because of the synergistic effect. In this report, N/O/S multi-doped carbon nanospheres (SLS/PANI-700) are prepared from crosslinking hydrogel beads of polyaniline and sodium lignosulfonate. The addition of sodium lignosulfonate improves the electrochemical performance of PANI-based carbon significantly by changing micromorphology, building interconnected network, and offering diverse doping. SLS/PANI-700 has an ultrahigh specific surface area of 2861 m2 g−1, well-developed hierarchically porous structure, interconnected conducting carbon network, and high N and O concentration. Take these advantages, it delivers a very high capacitance of 487.7 F g−1 at 1 A g−1, and a superior rate retention with a capacitance of 373.6 F g−1 at a high current density of 20 A g−1 as electrode material. The assembled symmetric supercapacitor device exhibits a very high energy density of 43.68 Wh kg−1 at 488.98 W kg−1 and keeps 21.18 Wh kg−1 under a high power density of 8664.54 W kg−1. Based on these properties, SLS/PANI-700 possesses great promising potential as electrode material for advanced supercapacitors.

References

1.
Lin
,
S.
,
Wang
,
F.
, and
Shao
,
Z.
,
2021
, “
Biomass Applied in Supercapacitor Energy Storage Devices
,”
J. Mater. Sci.
,
56
(
3
), pp.
1943
1979
.
2.
Bairi
,
P.
,
Maji
,
S.
,
Hill
,
J. P.
,
Kim
,
J. H.
,
Ariga
,
K.
, and
Shrestha
,
L. K.
,
2019
, “
Mesoporous Carbon Cubes Derived From Fullerene Crystals as a High Rate Performance Electrode Material for Supercapacitors
,”
J. Mater. Chem. A
,
7
(
20
), pp.
12654
12660
.
3.
Cui
,
M.
,
Tang
,
S.
,
Ma
,
Y.
,
Shi
,
X.
,
Syed
,
J. A.
, and
Meng
,
X.
,
2018
, “
Monolayer Standing MnO 2 -Nanosheet Covered Mn 3 O 4 Octahedrons Anchored in 3D N-Doped Graphene Networks as Supercapacitor Electrodes With Remarkable Cycling Stability
,”
J. Power Sources
,
396
, pp.
483
490
.
4.
Raj
,
C. J.
,
Rajesh
,
M.
,
Manikandan
,
R.
,
Yu
,
K. H.
,
Anusha
,
J. R.
,
Ahn
,
J. H.
,
Kim
,
D. W.
,
Park
,
S. Y.
, and
Kim
,
B. C.
,
2018
, “
High Electrochemical Capacitor Performance of Oxygen and Nitrogen Enriched Activated Carbon Derived From the Pyrolysis and Activation of Squid Gladius Chitin
,”
J. Power Sources
,
386
, pp.
66
76
.
5.
Wang
,
Y.
,
Liu
,
R.
,
Tian
,
Y.
,
Sun
,
Z.
,
Huang
,
Z.
,
Wu
,
X.
, and
Li
,
B.
,
2020
, “
Heteroatoms-Doped Hierarchical Porous Carbon Derived From Chitin for Flexible All-Solid-State Symmetric Supercapacitors
,”
Chem. Eng. J.
,
384
, p.
123263
.
6.
Hao
,
P.
,
Ma
,
X.
,
Xie
,
J.
,
Lei
,
F.
,
Li
,
L.
,
Zhu
,
W.
,
Cheng
,
X.
,
Cui
,
G.
, and
Tang
,
B.
,
2018
, “
Removal of Toxic Metal Ions Using Chitosan Coated Carbon Nanotube Composites for Supercapacitors
,”
Sci. China Chem.
,
61
(
7
), pp.
797
805
.
7.
Chen
,
K.
,
Liu
,
J.
,
Bian
,
H.
,
Wei
,
J.
,
Wang
,
W.
, and
Shao
,
Z.
,
2020
, “
Ingenious Preparation of N/NiOx Co-doped Hierarchical Porous Carbon Nanosheets Derived From Chitosan Nanofibers for High Performance Supercapacitors
,”
Nanotechnology
,
31
(
33
), p.
335713
.
8.
Zhang
,
Z.
,
Li
,
L.
,
Qing
,
Y.
,
Lu
,
X.
,
Wu
,
Y.
,
Yan
,
N.
, and
Yang
,
W.
,
2019
, “
Manipulation of Nanoplate Structures in Carbonized Cellulose Nanofibril Aerogel for High-Performance Supercapacitor
,”
J. Phys. Chem. C
,
123
(
38
), pp.
23374
23381
.
9.
Chen
,
Y.
,
Liu
,
Y.
,
Dong
,
Y.
,
Xia
,
Y.
,
Hung
,
C.
,
Liu
,
L.
,
Bi
,
W.
, and
Li
,
W.
,
2020
, “
Synthesis of Sandwich-Like Graphene@Mesoporous Nitrogen-Doped Carbon Nanosheets for Application in High-Performance Supercapacitors
,” p.
24001
.
10.
Wan
,
L.
,
Wei
,
W.
,
Xie
,
M.
,
Zhang
,
Y.
,
Li
,
X.
,
Xiao
,
R.
,
Chen
,
J.
, and
Du
,
C.
,
2019
, “
Nitrogen, Sulfur Co-doped Hierarchically Porous Carbon From Rape Pollen as High-Performance Supercapacitor Electrode
,”
Electrochim. Acta
,
311
, pp.
72
82
.
11.
Lu
,
H.
,
Zhuang
,
L.
,
Gaddam
,
R. R.
,
Sun
,
X.
,
Xiao
,
C.
,
Duignan
,
T.
,
Zhu
,
Z.
, and
Zhao
,
X. S.
,
2019
, “
Microcrystalline Cellulose-Derived Porous Carbons With Defective Sites for Electrochemical Applications
,”
J. Mater. Chem. A
,
7
(
39
), pp.
22579
22587
.
12.
Vijayakumar
,
M.
,
Adduru
,
J.
,
Rao
,
T. N.
, and
Karthik
,
M.
,
2018
, “
Conversion of Solar Energy Into Electrical Energy Storage: Supercapacitor as an Ultrafast Energy-Storage Device Made From Biodegradable Agar-Agar as a Novel and Low-Cost Carbon Precursor
,”
Glob. Challenges
,
2
(
10
), p.
1800037
.
13.
Chang
,
G.
,
Ren
,
J.
,
She
,
X.
,
Wang
,
K.
,
Komarneni
,
S.
, and
Yang
,
D.
,
2018
, “
How Heteroatoms (Ge, N, P) Improve the Electrocatalytic Performance of Graphene: Theory and Experiment
,”
Sci. Bull.
,
63
(
3
), pp.
155
158
.
14.
Wu
,
Y. P.
,
Rahm
,
E.
, and
Holze
,
R.
,
2002
, “
Effects of Heteroatoms on Electrochemical Performance of Electrode Materials for Lithium Ion Batteries
,”
Electrochim. Acta
,
47
(
21
), pp.
3491
3507
.
15.
Lin
,
G.
,
Ma
,
R.
,
Zhou
,
Y.
,
Liu
,
Q.
,
Dong
,
X.
, and
Wang
,
J.
,
2018
, “
KOH Activation of Biomass-Derived Nitrogen-Doped Carbons for Supercapacitor and Electrocatalytic Oxygen Reduction
,”
Electrochim. Acta
,
261
, pp.
49
57
.
16.
Meng
,
Q.
,
Chen
,
W.
,
Wu
,
L.
,
Lei
,
J.
,
Liu
,
X.
,
Zhu
,
W.
, and
Duan
,
T.
,
2019
, “
A Strategy of Making Waste Profitable: Nitrogen Doped Cigarette Butt Derived Carbon for High Performance Supercapacitors
,”
Energy
,
189
, p.
116241
.
17.
Ding
,
C.
,
Huang
,
L.
,
Yan
,
X.
,
Dunne
,
F.
,
Hong
,
S.
,
Lan
,
J.
,
Yu
,
Y.
,
Zhong
,
W. H.
, and
Yang
,
X.
,
2019
, “
Robust, Superelastic Hard Carbon With In situ Ultrafine Crystals
,”
Adv. Funct. Mater.
,
30
(
3
), p.
1907486
.
18.
Yan
,
J.
,
Wei
,
T.
,
Qiao
,
W.
,
Fan
,
Z.
,
Zhang
,
L.
,
Li
,
T.
, and
Zhao
,
Q.
,
2010
, “
A High-Performance Carbon Derived From Polyaniline for Supercapacitors
,”
Electrochem. Commun.
,
12
(
10
), pp.
1279
1282
.
19.
Chen
,
L.
,
Zhang
,
X.
,
Liang
,
H.
,
Kong
,
M.
,
Guan
,
Q.
,
Chen
,
P.
,
Wu
,
Z.
, and
Yu
,
S.
,
2012
, “
Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors
,”
ACS Nano
,
6
(
8
), pp.
7092
7102
.
20.
Zhang
,
W.
,
Huang
,
Y.
,
Yuan
,
F.
,
Sun
,
B.
,
Lin
,
J.
,
Yang
,
J.
, and
Sun
,
D.
,
2019
, “
Nitrogen-Doped Carbon Nanofibers Network Derived From Bacterial Cellulose for the Oxygen Reduction Reaction
,”
Chem. Lett.
,
48
(
10
), pp.
1188
1191
.
21.
Fu
,
X.
,
Jewel
,
Y.
,
Wang
,
Y.
,
Liu
,
J.
, and
Zhong
,
W. K.
,
2016
, “
Decoupled Ion Transport in a Protein-Based Solid Ion Conductor
,”
J. Phys. Chem. Lett.
,
7
(
21
), pp.
4304
4310
.
22.
Liu
,
Y.
,
Liu
,
L.
,
Tan
,
Y.
,
Niu
,
L.
,
Kong
,
L.
,
Kang
,
L.
, and
Ran
,
F.
,
2018
, “
Carbon Nanosphere@Vanadium Nitride Electrode Materials Derived From Metal-Organic Nanospheres Self-Assembled by NH4VO3, Chitosan, and Amphiphilic Block Copolymer
,”
Electrochim. Acta
,
262
, pp.
66
73
.
23.
Zhao
,
Y.
,
Wei
,
M.
,
Zhu
,
Z.
,
Zhang
,
J.
,
Xiao
,
L.
, and
Hou
,
L.
,
2019
, “
Facile Preparation of N-O Codoped Hierarchically Porous Carbon From Alginate Particles for High Performance Supercapacitor
,”
J. Colloid Interface Sci.
,
563
, p.
414
425
.
24.
Huang
,
J.
,
Zhang
,
W.
,
Huang
,
H.
,
Liu
,
Y.
,
Yang
,
Q.
, and
Li
,
L.
,
2019
, “
Facile Synthesis of N,S-Codoped Hierarchically Porous Carbon With High Volumetric Pseudocapacitance
,”
ACS Sustainable Chem. Eng.
,
7
(
19
), p.
16719
.
25.
Ye
,
Z.
,
Wang
,
F.
,
Jia
,
C.
, and
Shao
,
Z.
,
2018
, “
Biomass-Based O, N-Codoped Activated Carbon Aerogels With Ultramicropores for Supercapacitors
,”
J. Mater. Sci.
,
53
(
17
), pp.
12374
12387
.
26.
Qu
,
K.
,
Zheng
,
Y.
,
Zhang
,
X.
,
Davey
,
K.
,
Dai
,
S.
, and
Qiao
,
S. Z.
,
2017
, “
Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets With Secondary Heteroatoms
,”
ACS Nano
,
11
(
7
), pp.
7293
7300
.
27.
Lin
,
S.
,
Mo
,
L.
,
Wang
,
F.
, and
Shao
,
Z.
,
2021
, “
N/O Co-doped Hierarchically Porous Carbon With Three-Dimensional Conductive Network for High-Performance Supercapacitors
,”
J. Alloys Compd.
,
873
, p.
159705
.
28.
Deng
,
Y.
,
Ji
,
Y.
,
Wu
,
H.
, and
Chen
,
F.
,
2019
, “
Enhanced Electrochemical Performance and High Voltage Window for Supercapacitor Based on Multi-heteroatom Modified Porous Carbon Materials
,”
Chem. Commun.
,
55
(
10
), pp.
1486
1489
.
29.
Ji
,
Y.
,
Deng
,
Y.
,
Wu
,
H.
, and
Tong
,
Z.
,
2019
, “
In situ Preparation of P, O Co-doped Carbon Spheres for High-Energy Density Supercapacitor
,”
J. Appl. Electrochem.
,
49
(
6
), pp.
599
607
.
30.
Bhadra
,
S.
,
Singha
,
N. K.
, and
Khastgir
,
D.
,
2008
, “
Semiconductive Composites From Ethylene 1-Octene Copolymer and Polyaniline Coated Nylon 6: Studies on Mechanical, Thermal, Processability, Electrical, and EMI Shielding Properties
,”
Polym. Eng. Sci.
,
48
(
5
), pp.
995
1006
.
31.
Plesu
,
N.
,
Ilia
,
G.
,
Pascariu
,
A.
, and
Vlase
,
G.
,
2006
, “
Preparation, Degradation of Polyaniline Doped With Organic Phosphorus Acids and Corrosion Essays of Polyaniline–Acrylic Blends
,”
Synth. Met.
,
156
(
2
), pp.
230
238
.
32.
Choi
,
M.
,
Han
,
T.
,
Lim
,
K.
,
Woo
,
S.
,
Huh
,
D. H.
, and
Lee
,
T.
,
2011
, “
Soluble Self-doped Conducting Polymer Compositions With Tunable Work Function as Hole Injection/Extraction Layers in Organic Optoelectronics
,”
Angew. Chem., Int. Ed.
,
50
(
28
), pp.
6274
6277
.
33.
Zhou
,
K.
,
He
,
Y.
,
Xu
,
Q.
,
Zhang
,
Q. E.
,
Zhou
,
A. A.
,
Lu
,
Z.
,
Yang
,
L. K.
,
Jiang
,
Y.
,
Ge
,
D.
,
Liu
,
X. Y.
, and
Bai
,
H.
,
2018
, “
A Hydrogel of Ultrathin Pure Polyaniline Nanofibers: Oxidant-Templating Preparation and Supercapacitor Application
,”
ACS Nano
,
12
(
6
), pp.
5888
5894
.
34.
Huang
,
J.
, and
Kaner
,
R. B.
,
2004
, “
A General Chemical Route to Polyaniline Nanofibers
,”
J. Am. Chem. Soc.
,
126
(
3
), pp.
851
855
.
35.
Zhou
,
Z.
,
Wang
,
J.
,
Wang
,
Z.
, and
Zhang
,
F.
,
2011
, “
Self-assembly of Polyaniline Nanowires Into Polyaniline Microspheres
,”
Mater. Lett.
,
65
(
14
), pp.
2311
2314
.
36.
Zhang
,
L.
, and
Wan
,
M.
,
2003
, “
Self-assembly of Polyaniline—From Nanotubes to Hollow Microspheres
,”
Adv. Funct. Mater.
,
13
(
10
), pp.
815
820
.
37.
Fei
,
J.
,
Cui
,
Y.
,
Yan
,
X.
,
Yang
,
Y.
,
Wang
,
K.
, and
Li
,
J.
,
2009
, “
Controlled Fabrication of Polyaniline Spherical and Cubic Shells With Hierarchical Nanostructures
,”
ACS Nano
,
3
(
11
), pp.
3714
3718
.
38.
Yin
,
J.
,
Xia
,
X.
,
Xiang
,
L.
, and
Zhao
,
X.
,
2010
, “
Conductivity and Polarization of Carbonaceous Nanotubes Derived From Polyaniline Nanotubes and Their Electrorheology When Dispersed in Silicone Oil
,”
Carbon
,
48
(
10
), pp.
2958
2967
.
39.
Han
,
J.
,
Xu
,
G.
,
Ding
,
B.
,
Pan
,
J.
,
Dou
,
H.
, and
MacFarlane
,
D. R.
,
2014
, “
Porous Nitrogen-Doped Hollow Carbon Spheres Derived From Polyaniline for High Performance Supercapacitors
,”
J. Mater. Chem. A
,
2
(
15
), pp.
5352
5357
.
40.
Li
,
L.
,
Liu
,
E.
,
Li
,
J.
,
Yang
,
Y.
,
Shen
,
H.
,
Huang
,
Z.
,
Xiang
,
X.
, and
Li
,
W.
,
2010
, “
A Doped Activated Carbon Prepared From Polyaniline for High Performance Supercapacitors
,”
J. Power Sources
,
195
(
5
), pp.
1516
1521
.
41.
Zhang
,
H.
,
Cao
,
G.
,
Yang
,
Y.
, and
Gu
,
Z.
,
2008
, “
Capacitive Performance of an Ultralong Aligned Carbon Nanotube Electrode in an Ionic Liquid at 60 °C
,”
Carbon
,
46
(
1
), pp.
30
34
.
42.
Zhang
,
L.
,
Ji
,
X.
,
Si
,
H.
,
Zhang
,
Y.
,
Sha
,
L.
,
Chen
,
H.
, and
Zhao
,
X.
,
2020
, “
High-Performance Supercapacitor Poplar Catkin Ag/Carbon Fibers Composites
,”
Appl. Phys. A
,
126
(
10
), p.
803
.
43.
Tian
,
J.
,
Liu
,
C.
,
Lin
,
C.
, and
Ma
,
M.
,
2019
, “
Constructed Nitrogen and Sulfur Codoped Multilevel Porous Carbon From Lignin for High-Performance Supercapacitors
,”
J. Alloys Compd.
,
789
, pp.
435
442
.
44.
Minghui
,
G.
,
Lulu
,
B.
,
Tingwen
,
S.
,
Jianxin
,
G.
, and
Taochuang
,
Z.
,
2016
, “
Research Advance in Chitosan/Lignin Composite
,”
World For. Res.
,
29
(
5
), pp.
33
36
.
45.
Lastoskie
,
C. M.
, and
Gubbins
,
K. E.
,
2000
, “
Characterization of Porous Materials Using Density Functional Theory and Molecular Simulation
,”
Stud. Surf. Sci. Catal.
,
128
, pp.
41
50
.
46.
Rui
,
L.
,
Qin
,
C.
,
Zhang
,
X.
,
Lin
,
Z.
,
Lv
,
S.
, and
Jiang
,
X.
,
2019
, “
Boron/Nitrogen Co-doped Carbon Synthesized From Waterborne Polyurethane and Graphene Oxide Composite for Supercapacitors
,”
RSC Adv.
,
9
(
3
), pp.
1679
1689
.
47.
Li
,
Q.
,
Wu
,
M.
,
Zhao
,
J.
,
,
Q.
,
Han
,
L.
, and
Liu
,
R.
,
2019
, “
Tannic Acid-Assisted Fabrication of N/B-Codoped Hierarchical Carbon Nanofibers From Electrospun Zeolitic Imidazolate Frameworks as Free-Standing Electrodes for High-Performance Supercapacitors
,”
J. Electron. Mater.
,
48
(
5
), pp.
3050
3058
.
48.
Wu
,
M.
,
Tong
,
S.
,
Jiang
,
L.
,
Hou
,
B.
,
Li
,
X.
,
Zhang
,
Y.
,
Yue
,
J.
,
Jiang
,
M.
, and
Sheng
,
L.
,
2020
, “
Nitrogen-doped Porous Carbon Composite With Three-Dimensional Conducting Network for High Rate Supercapacitors
,”
J. Alloys Compd.
,
844
, p.
156217
.
49.
Xu
,
H.
,
Chen
,
J.
,
Wang
,
D.
,
Sun
,
Z.
,
Zhang
,
P.
,
Zhang
,
Y.
, and
Guo
,
X.
,
2017
, “
Hierarchically Porous Carbon-Coated SnO2@Graphene Foams as Anodes for Lithium Ion Storage
,”
Carbon
,
124
, pp.
565
575
.
50.
Chen
,
Z.
,
Wang
,
X.
,
Xue
,
B.
,
Li
,
W.
,
Ding
,
Z.
,
Yang
,
X.
,
Qiu
,
J.
, and
Wang
,
Z.
,
2020
, “
Rice Husk-Based Hierarchical Porous Carbon for High Performance Supercapacitors: The Structure-Performance Relationship
,”
Carbon
,
161
, pp.
432
444
.
51.
Wang
,
K.
,
Cao
,
Y.
,
Wang
,
X.
,
Fan
,
Q.
,
Gibbons
,
W.
,
Johnson
,
T.
,
Luo
,
B.
, and
Gu
,
Z.
,
2016
, “
Pyrolytic Cyanobacteria Derived Activated Carbon as High Performance Electrode in Symmetric Supercapacitor
,”
Energy
,
94
, pp.
666
671
.
52.
Ma
,
Y.
,
Hou
,
C.
,
Zhang
,
H.
,
Zhang
,
Q.
,
Liu
,
H.
,
Wu
,
S.
, and
Guo
,
Z.
,
2019
, “
Three-Dimensional Core-Shell Fe3O4/Polyaniline Coaxial Heterogeneous Nanonets: Preparation and High Performance Supercapacitor Electrodes
,”
Electrochim. Acta
,
315
, pp.
114
123
.
53.
Sinha
,
P.
,
Yadav
,
A.
,
Tyagi
,
A.
,
Paik
,
P.
,
Yokoi
,
H.
,
Naskar
,
A. K.
,
Kuila
,
T.
, and
Kar
,
K. K.
,
2020
, “
Keratin-Derived Functional Carbon With Superior Charge Storage and Transport for High-Performance Supercapacitors
,”
Carbon
,
168
, pp.
419
438
.
54.
Si
,
W.
,
Zhou
,
J.
,
Zhang
,
S.
,
Li
,
S.
,
Xing
,
W.
, and
Zhuo
,
S.
,
2013
, “
Tunable N-Doped or Dual N, S-Doped Activated Hydrothermal Carbons Derived From Human Hair and Glucose for Supercapacitor Applications
,”
Electrochim. Acta
,
107
, pp.
397
405
.
55.
Rana
,
M.
,
Subramani
,
K.
,
Sathish
,
M.
, and
Gautam
,
U. K.
,
2017
, “
Soya Derived Heteroatom Doped Carbon as a Promising Platform for Oxygen Reduction, Supercapacitor and CO2 Capture
,”
Carbon
,
114
, pp.
679
689
.
56.
Terzyk
,
A. P.
,
2001
, “
The Influence of Activated Carbon Surface Chemical Composition on the Adsorption of Acetaminophen (Paracetamol) In vitro: Part II. TG, FTIR, and XPS Analysis of Carbons and the Temperature Dependence of Adsorption Kinetics at the Neutral pH
,”
Colloids Surf., A
,
177
(
1
), pp.
23
45
.
57.
Hao
,
M.
,
Xiao
,
N.
,
Wang
,
Y.
,
Li
,
H.
,
Zhou
,
Y.
,
Liu
,
C.
, and
Qiu
,
J.
,
2018
, “
Pitch-Derived N-Doped Porous Carbon Nanosheets With Expanded Interlayer Distance as High-Performance Sodium-Ion Battery Anodes
,”
Fuel Process. Technol.
,
177
, pp.
328
335
.
58.
Wang
,
K.
,
Zhao
,
N.
,
Lei
,
S.
,
Yan
,
R.
,
Tian
,
X.
,
Wang
,
J.
,
Song
,
Y.
,
Xu
,
D.
,
Guo
,
Q.
, and
Liu
,
L.
,
2015
, “
Promising Biomass-Based Activated Carbons Derived From Willow Catkins for High Performance Supercapacitors
,”
Electrochim. Acta
,
166
, pp.
1
11
.
59.
Gopalakrishnan
,
A.
, and
Badhulika
,
S.
,
2018
, “
Ultrathin Graphene-Like 2D Porous Carbon Nanosheets and Its Excellent Capacitance Retention for Supercapacitor
,”
J. Ind. Eng. Chem.
,
68
, pp.
257
266
.
60.
Meng
,
X.
,
Jia
,
S.
,
Mo
,
L.
,
Wei
,
J.
,
Wang
,
F.
, and
Shao
,
Z.
,
2020
, “
O/N-co-doped Hierarchically Porous Carbon From Carboxymethyl Cellulose Ammonium for High-Performance Supercapacitors
,”
J. Mater. Sci.
,
55
(
17
), pp.
7417
7431
.
61.
Dong
,
D.
,
Zhang
,
Y.
,
Xiao
,
Y.
,
Wang
,
T.
,
Wang
,
J.
, and
Pan
,
W. P.
,
2020
, “
Synthesis of O-Doped Coal-Based Carbon Electrode Materials by Ultrasound-Assisted Bimetallic Activation for Application in Supercapacitors
,”
Appl. Surf. Sci.
,
529
, p.
147074
.
62.
Gao
,
Y.
,
Zheng
,
S.
,
Fu
,
H.
,
Ma
,
J.
,
Xu
,
X.
,
Guan
,
L.
,
Wu
,
H.
, and
Wu
,
Z.
,
2020
, “
Three-Dimensional Nitrogen Doped Hierarchically Porous Carbon Aerogels With Ultrahigh Specific Surface Area for High-Performance Supercapacitors and Flexible Micro-supercapacitors
,”
Carbon
,
168
, pp.
701
709
.
63.
Lee
,
B.
,
Jeong
,
C.
,
Hong
,
S.
,
Yun
,
J.
, and
Choi
,
J.
,
2020
, “
Eco-friendly Fabrication of Porous Carbon Monoliths From Water-Soluble Carboxymethyl Cellulose for Supercapacitor Applications
,”
J. Ind. Eng. Chem.
,
82
, pp.
367
373
.
64.
Jayawickramage
,
R. A. P.
,
Balkus
,
K. J.
, and
Ferraris
,
J. P.
,
2019
, “
Binder Free Carbon Nanofiber Electrodes Derived From Polyacrylonitrile-Lignin Blends for High Performance Supercapacitors
,”
Nanotechnology
,
30
(
35
), p.
355402
.
65.
Lin
,
S.
,
Mo
,
L.
, and
Wang
,
F.
,
2022
, “
One-Step Synthesis of O-Self-Doped Honeycomb-Like Hierarchically Porous Carbons for Supercapacitors
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
1
), p.
011003
.
You do not currently have access to this content.