Abstract

Lithium-ion traction batteries are increasingly used in transportation, such as electric vehicles and buses. To reduce the life cycle cost of traction batteries, material recycling is a technical route that must be considered. Deep discharge is one of the necessary steps in battery disassembly and material recycle; however, the thermal stability and internal material changes caused by deep discharge can affect the subsequent recycling processes. In this paper, we study the influence of deep-discharge rate on the recycling process of a commercial traction battery with LiNi1/3Co1/3Mn1/3O2 cathode and a graphite anode. Combine with multi-analysis methods, we systematically explored the evolution of an electrode structure under different deep-discharge current densities. Our results show that the deep-discharge current density has different effects on the internal structure of the battery and may affect its thermal safety.

References

1.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2011
, “
Issues and Challenges Facing Rechargeable Lithium Batteries Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles From Nature Publishing Group
,”
World Scientific
, pp.
171
179
.
2.
Etacheri
,
V.
,
Marom
,
R.
,
Elazari
,
R.
,
Salitra
,
G.
, and
Aurbach
,
D.
,
2011
, “
Challenges in the Development of Advanced Li-Ion Batteries: A Review
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3243
3262
.
3.
Balogun
,
M.-S.
,
Qiu
,
W.
,
Luo
,
Y.
,
Meng
,
H.
,
Mai
,
W.
,
Onasanya
,
A.
, and
Tong
,
Y.
,
2016
, “
A Review of the Development of Full Cell Lithium-Ion Batteries: The Impact of Nanostructured Anode Materials
,”
Nano Res.
,
9
(
010
), pp.
1
29
.
4.
Mukai
,
K.
, and
Nakano
,
H.
,
2014
, “
Factors Affecting the Volumetric Energy Density of Lithium-Ion Battery Materials: Particle Density Measurements and Cross-sectional Observations of Layered LiCo1–xNixO2 with 0 ≤ x ≤ 1
,”
ACS Appl. Mater. Interfaces
,
6
(
13
), pp.
10583
10592
.
5.
Kwasieffah
,
C. C.
, and
Rabczuk
,
T.
,
2018
, “
Dimensional Analysis and Modelling of Energy Density of Lithium-Ion Battery
,”
J. Energy Storage
,
18
(
1
), pp.
308
315
.
6.
Xue
,
N.
,
Du
,
W.
,
Greszler
,
T. A.
,
Shyy
,
W.
, and
Martins
J. R. R. A.
,
2014
, “
Design of a Lithium-Ion Battery Pack for PHEV Using a Hybrid Optimization Method
,”
Appl. Energy
,
115
, pp.
591
602
.
7.
Arora
,
S.
,
Shen
,
W.
, and
Kapoor
,
A.
,
2016
, “
Review of Mechanical Design and Strategic Placement Technique of a Robust Battery Pack for Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1319
1331
.
8.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
.
9.
Manthiram
,
A.
,
2011
, “
Materials Challenges and Opportunities of Lithium-Ion Batteries for Electrical Energy Storage
,”
J. Phys. Chem. Lett.
,
2
(
3
), pp.
176
184
.
10.
Hautier
,
G.
,
Jain
,
A.
,
Ong
,
S. P.
,
Kang
,
B.
,
Moore
,
C.
,
Doe
,
R.
, and
Ceder
,
G.
,
2011
, “
Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations
,”
Chem. Mater.
,
23
(
15
), pp.
3495
3508
.
11.
Nishimura
,
S.
,
Nakamura
,
M.
,
Natsui
,
R.
, and
Yamada
,
A.
,
2010
, “
New Lithium Iron Pyrophosphate as 3.5 V Class Cathode Material for Lithium Ion Battery
,”
J. Am. Chem. Soc.
,
132
(
39
), pp.
13596
13597
.
12.
Liu
,
S.
,
Xiong
,
L.
, and
He
,
C.
,
2014
, “
Long Cycle Life Lithium Ion Battery With Lithium Nickel Cobalt Manganese Oxide (NCM) Cathode
,”
J. Power Sources
,
261
, pp.
285
291
.
13.
Yu
,
Q.
,
Chen
,
Z.
,
Xing
,
L.
,
Chen
,
D.
,
Rong
,
H.
,
Liu
,
Q.
, and
Li
,
W.
,
2015
, “
Enhanced High Voltage Performances of Layered Lithium Nickel Cobalt Manganese Oxide Cathode by Using Trimethylboroxine as Electrolyte Additive
,”
Electrochim. Acta
,
176
(
Complete
), pp.
919
925
.
14.
Patoux
,
S.
,
Sannier
,
L.
,
Lignier
,
H.
,
Reynier
,
Y.
,
Bourbon
,
C.
,
Jouanneau
,
S.
,
Le Cras
,
F.
, and
Martinet
,
S.
,
2008
, “
High Voltage Nickel Manganese Spinel Oxides for Li-Ion Batteries
,”
Electrochim. Acta
,
53
(
12
), pp.
4137
4145
.
15.
Yoshizawa
,
H.
, and
Ohzuku
,
T.
,
2007
, “
An Application of Lithium Cobalt Nickel Manganese Oxide to High-Power and High-Energy Density Lithium-Ion Batteries
,”
J. Power Sources
,
174
(
2
), pp.
813
817
.
16.
Min
,
K.
,
Kim
,
K.
,
Jung
,
C.
,
Seo
,
S. W.
,
Song
,
Y. Y.
,
Lee
,
H. S.
,
Shin
,
J.
, and
Cho
,
E.
,
2016
, “
A Comparative Study of Structural Changes in Lithium Nickel Cobalt Manganese Oxide as a Function of Ni Content During Delithiation Process
,”
J. Power Sources
,
315
, pp.
111
119
.
17.
Jaguemont
,
J.
,
Boulon
,
L.
, and
Dubé
,
Y.
,
2016
, “
A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures
,”
Appl. Energy
,
164
(
1
), pp.
99
114
.
18.
Hendricks
,
C.
,
Williard
,
N.
,
Mathew
,
S.
, and
Pecht
,
M.
,
2015
, “
A Failure Modes, Mechanisms, and Effects Analysis (FMMEA) of Lithium-Ion Batteries
,”
J. Power Sources
,
297
(
1
), pp.
113
120
.
19.
Wen
,
J.
,
Yu
,
Y.
, and
Chen
,
C.
,
2012
, “
A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions
,”
Mater. Express
,
2
(
3
), pp.
197
212
.
20.
Barré
,
A.
,
Deguilhem
,
B.
,
Grolleau
,
S. B.
,
Gérard
,
M.
,
Suard
,
F. D.
, and
Riu
,
D.
,
2013
, “
A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications
,”
J. Power Sources
,
241
(
1
), pp.
680
689
.
21.
Jungst
,
R. G.
,
Nagasubramanian
,
G.
,
Case
,
H. L.
,
Liaw
,
B. Y.
,
Urbina
,
A.
,
Paez
,
T. L.
, and
Doughty
,
D. H
,
2003
, “
Accelerated Calendar and Pulse Life Analysis of Lithium-Ion Cells
,”
J. Power Sources
,
119
, pp.
870
873
.
22.
Li
,
J.
,
Downie
,
L.
,
Ma
,
L.
,
Qiu
,
W.
, and
Dahn
,
J. R.
,
2015
, “
Study of the failure mechanisms of LiNi0. 8Mn0. 1Co0. 1O2 cathode material for lithium ion batteries
,”
J. Electr. Chem. Soc. Model. Simul. Comp. Sys.
,
162
(
7
), pp.
A1401
A1408
.
23.
Ouyang
,
D.
,
Chen
,
M.
,
Liu
,
J.
,
Wei
,
R.
,
Weng
,
J.
, and
Wang
,
J.
,
2018
, “
Investigation of a Commercial Lithium-Ion Battery Under Overcharge/Over-discharge Failure Conditions
,”
RSC Adv.
,
8
(
58
), pp.
33414
33424
.
24.
Dubarry
,
M.
,
Truchot
,
C.
,
Devie
,
A.
,
Liaw
,
B. Y.
,
Gering
,
K.
,
Sazhin
,
S.
,
Jamison
,
D.
, and
Michelbacher
,
C.
,
2015
, “
Evaluation of Commercial Lithium-Ion Cells Based on Composite Positive Electrode for Plug-In Hybrid Electric Vehicle (PHEV) Applications IV. Over-Discharge Phenomena
,”
J. Electrochem. Soc.
,
162
(
9
), pp.
A1787
A1792
.
25.
Chen
,
J.
,
Buhrmester
,
C.
, and
Dahn
,
J.
,
2005
, “
Chemical Overcharge and Over Discharge Protection for Lithium-Ion Batteries
,”
Electrochem. Solid-State Lett.
,
8
(
5
), pp.
A59
A62
.
26.
Yu
,
Z.
,
Hu
,
J.
,
Chu
,
X.
, and
Liu
,
Q.
,
2006
, “
Effects of Over-discharge on Performance of MCMB-LiCoO2 Lithium-Ion Battery
,”
Chin. Battery Ind.
,
11
(
3
), pp.
223
226
.
27.
Lai
,
X.
,
Zheng
,
Y.
,
Zhou
,
L.
, and
Gao
,
W.
,
2018
, “
Electrical Behavior of Over Discharge-Induced Internal Short Circuit in Lithium-Ion Cells
,”
Electrochim. Acta
,
278
(
1
), pp.
245
254
.
28.
Liu
,
B.
,
Duan
,
X.
,
Yuan
,
C.
,
Wang
,
L.
,
Li
,
J.
,
Finegan
,
D. P.
,
Feng
,
B.
, and
Xu
,
J.
,
2021
, “
Quantifying and Modeling of Stress-Driven Short-Circuits in Lithium-Ion Batteries in Electrified Vehicles
,”
J. Mater. Chem. A
,
9
(
11
), pp.
7102
7113
.
29.
Kim
,
Y. S.
,
Lee
,
S. H.
,
Son
,
M. Y.
,
Jung
,
Y. M.
,
Song
,
H. K.
, and
Lee
,
H.
,
2014
, “
Succinonitrile as a Corrosion Inhibitor of Copper Current Collectors for Overdischarge Protection of Lithium Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
6
(
3
), pp.
2039
2043
.
30.
Fuentevilla
,
D.
,
Hendricks
,
C.
, and
Mansour
,
A.
,
2015
, “
Quantifying the Impact of Overdischarge on Large Format Lithium-Ion Cells
,”
ECS Trans.
,
69
(
20
), pp.
1
4
.
31.
Liu
,
B.
,
Yin
,
S.
, and
Xu
,
J.
,
2016
, “
Integrated Computation Model of Lithium-Ion Battery Subject to Nail Penetration
,”
Appl. Energy
,
183
(
1
), pp.
278
289
.
32.
Shu
,
J.
,
Shui
,
M.
,
Xu
,
D.
,
Wang
,
D.
,
Ren
,
Y.
, and
Gao
,
S.
,
2012
, “
A Comparative Study of Overdischarge Behaviors of Cathode Materials for Lithium-Ion Batteries
,”
J. Solid State Electrochem.
,
16
(
2
), pp.
819
824
.
33.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
(
1
), pp.
85
112
.
34.
Hashimoto
,
M.
,
Yamashiro
,
M.
,
Ichihashi
,
T.
,
Toda
,
A.
,
Miyazaki
,
T.
, and
Fujieda
,
S.
,
2015
, “
Mechanism of Gas Generation in Lithium Ion Batteries by Overdischarge
,”
ECS Trans.
,
69
(
20
), pp.
17
22
.
35.
Wu
,
C.
,
Sun
,
J.
, and
Zhu
,
C.
,
2015
, “
Diagnosis of Performance Degradation for Lithium-Ion Battery Module in Electric Vehicle
,”
2015 IEEE Vehicle Power and Propulsion Conference (VPPC)
,
Canada
, IEEE, pp.
1
6
.
You do not currently have access to this content.