Abstract

State-of-charge (SOC) estimation is essential in the energy management of electric vehicles. In the context of SOC estimation, a dual filter based on the equivalent circuit model represents an important research direction. The trigger for parameter filter in a dual filter has a significant influence on the algorithm, despite which it has been studied scarcely. The present paper, therefore, discusses the types and characteristics of triggers reported in the literature and proposes a novel trigger mechanism for improving the accuracy and robustness of SOC estimation. The proposed mechanism is based on an open-loop model, which determines whether to trigger the parameter filter based on the model voltage error. In the present work, particle filter (PF) is used as the state filter and Kalman filter (KF) as the parameter filter. This dual filter is used as a carrier to compare the proposed trigger with three other triggers and single filter algorithms, including PF and unscented Kalman filter (UKF). According to the results, under different dynamic cycles, initial SOC values, and temperatures, the root-mean-square error of the SOC estimated using the proposed algorithm is at least 34.07% lower than the value estimated using other approaches. In terms of computation time, the value is 4.67%. Therefore, the superiority of the proposed mechanism is demonstrated.

References

1.
Bi
,
J.
,
Wang
,
Y.
, and
Zhao
,
X.-M.
,
2017
, “
State of Charge Estimation for Electric Vehicle Batteries Based on a Particle Filter Algorithm
,”
Proceedings of the 2nd International Conference on Software, Multimedia and Communication Engineering
,
Shanghai, China
,
Apr. 23–24
.
2.
Zheng
,
F.
,
Xing
,
Y.
,
Jiang
,
J.
,
Sun
,
B.
,
Kim
,
J.
, and
Pecht
,
M.
,
2016
, “
Influence of Different Open Circuit Voltage Tests on State of Charge Online Estimation for Lithium-Ion Batteries
,”
Appl. Energy
,
183
, pp.
513
525
.
3.
Chiang
,
Y.-H.
,
Sean
,
W.-Y.
, and
Ke
,
J.-C.
,
2011
, “
Online Estimation of Internal Resistance and Open-Circuit Voltage of Lithium-Ion Batteries in Electric Vehicles
,”
J. Power Sources
,
196
(
8
), pp.
3921
3932
.
4.
Ng
,
K.
,
Moo
,
C.-S.
,
Chen
,
Y.-P.
, and
Hsieh
,
Y.-C.
,
2009
, “
Enhanced Coulomb Counting Method for Estimating State-of-Charge and State-of-Health of Lithium-Ion Batteries
,”
Appl. Energy
,
86
(
9
), pp.
1506
1511
.
5.
Zheng
,
L.
,
Zhang
,
L.
,
Zhu
,
J.
,
Wang
,
G.
, and
Jiang
,
J.
,
2016
, “
Co-Estimation of State-of-Charge, Capacity and Resistance for Lithium-Ion Batteries Based on a High-Fidelity Electrochemical Model
,”
Appl. Energy
,
180
, pp.
424
434
.
6.
Zou
,
C.
,
Hu
,
X.
,
Dey
,
S.
,
Zhang
,
L.
, and
Tang
,
X.
,
2017
, “
Nonlinear Fractional-Order Estimator With Guaranteed Robustness and Stability for Lithium-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
65
(
8
), pp.
6635
6645
.
7.
Chen
,
Z.
,
Fu
,
Y.
, and
Mi
,
C. C.
,
2013
, “
State of Charge Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering
,”
IEEE Trans. Veh. Technol.
,
62
(
3
), pp.
1020
1030
.
8.
He
,
W.
,
Williard
,
N.
,
Chen
,
C.
, and
Pecht
,
M.
,
2013
, “
State of Charge Estimation for Electric Vehicle Batteries Using Unscented Kalman Filtering
,”
Microelectron. Reliab.
,
53
(
6
), pp.
840
847
.
9.
Wang
,
Y.
,
Zhang
,
C.
, and
Chen
,
Z.
,
2015
, “
A Method for State-of-Charge Estimation of LiFePO4 Batteries at Dynamic Currents and Temperatures Using Particle Filter
,”
J. Power Sources
,
279
, pp.
306
311
.
10.
Zhong
,
L.
,
Zhang
,
C.
,
He
,
Y.
, and
Chen
,
Z.
,
2014
, “
A Method for the Estimation of the Battery Pack State of Charge Based on in-Pack Cells Uniformity Analysis
,”
Appl. Energy
,
113
, pp.
558
564
.
11.
Hu
,
L.
,
Hu
,
X.
,
Che
,
Y.
,
Feng
,
F.
,
Lin
,
X.
, and
Zhang
,
Z.
,
2020
, “
Reliable State of Charge Estimation of Battery Packs Using Fuzzy Adaptive Federated Filtering
,”
Appl. Energy
,
262
, p.
114569
.
12.
Kim
,
J.
,
Lee
,
S.
, and
Cho
,
B. H.
,
2011
, “
Discrimination of Li-Ion Batteries Based on Hamming Network Using Discharging–Charging Voltage Pattern Recognition for Improved State-of-Charge Estimation
,”
J. Power Sources
,
196
(
4
), pp.
2227
2240
.
13.
Chen
,
J.
,
Ouyang
,
Q.
,
Xu
,
C.
, and
Su
,
H.
,
2018
, “
Neural Network-Based State of Charge Observer Design for Lithium-Ion Batteries
,”
IEEE Trans. Control Syst. Technol.
,
26
(
1
), pp.
313
320
.
14.
Meng
,
J.
,
Luo
,
G.
, and
Gao
,
F.
,
2016
, “
Lithium Polymer Battery State-of-Charge Estimation Based on Adaptive Unscented Kalman Filter and Support Vector Machine
,”
IEEE Trans. Power Electron.
,
31
(
3
), pp.
2226
2238
.
15.
Antón
,
J. C. Á.
,
Nieto
,
P. J. G.
,
Viejo
,
C. B.
, and
Vilán
,
J. A. V.
,
2013
, “
Support Vector Machines Used to Estimate the Battery State of Charge
,”
IEEE Trans. Power Electron.
,
28
(
12
), pp.
5919
5926
.
16.
Salkind
,
A. J.
,
Fennie
,
C.
,
Singh
,
P.
,
Atwater
,
T.
, and
Reisner
,
D. E.
,
1999
, “
Determination of State-of-Charge and State-of-Health of Batteries by Fuzzy Logic Methodology
,”
J. Power Sources
,
80
(
1–2
), pp.
293
300
.
17.
Zheng
,
Y.
,
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
, and
Ouyang
,
M.
,
2013
, “
LiFePO4 Battery Pack Capacity Estimation for Electric Vehicles Based on Charging Cell Voltage Curve Transformation
,”
J. Power Sources
,
226
, pp.
33
41
.
18.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 3. State and Parameter Estimation
,”
J. Power Sources
,
134
(
2
), pp.
277
292
.
19.
Plett
,
G. L.
,
2006
, “
Sigma-Point Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 2: Simultaneous State and Parameter Estimation
,”
J. Power Sources
,
161
(
2
), pp.
1369
1384
.
20.
Hao
,
X.
, and
Wu
,
J.
,
2015
, “
Online State Estimation Using Particles Filters of Lithium-Ion Polymer Battery Packs for Electric Vehicle
,”
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics
, pp.
783
788
.
21.
Wei
,
Z.
,
Zou
,
C.
,
Leng
,
F.
,
Soong
,
B. H.
, and
Tseng
,
K.-J.
,
2018
, “
Online Model Identification and State-of-Charge Estimate for Lithium-Ion Battery With a Recursive Total Least Squares-Based Observer
,”
IEEE Trans. Ind. Electron.
,
65
(
2
), pp.
1336
1346
.
22.
Yang
,
H.
,
Sun
,
X.
,
An
,
Y.
,
Zhang
,
X.
,
Wei
,
T.
, and
Ma
,
Y.
,
2019
, “
Online Parameters Identification and State of Charge Estimation for Lithium-Ion Capacitor Based on Improved Cubature Kalman Filter
,”
J. Energy Storage
,
24
, p.
100810
.
23.
Wang
,
Q.
,
Kang
,
J.
,
Tan
,
Z.
, and
Luo
,
M.
, “
An Online Method to Simultaneously Identify the Parameters and Estimate States for Lithium Ion Batteries
,”
Electrochim. Acta
,
289
, pp.
376
388
.
24.
Hu
,
X.
,
Feng
,
F.
,
Liu
,
K.
,
Zhang
,
L.
,
Xie
,
J.
, and
Liu
,
B.
,
2019
, “
State Estimation for Advanced Battery Management: Key Challenges and Future Trends
,”
Renewable Sustainable Energy Rev.
,
114
, p.
109334
.
25.
Xiong
,
R.
,
Zhang
,
Y.
,
He
,
H.
,
Zhou
,
X.
, and
Pecht
,
M. G.
,
2018
, “
A Double-Scale, Particle-Filtering. Energy State Prediction Algorithm for Lithium-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
65
(
2
), pp.
1526
1538
.
26.
Sun
,
F.
, and
Xiong
,
R.
,
2015
, “
A Novel Dual-Scale Cell State-of-Charge Estimation Method for Series-Connected Battery Pack Used in Electric Vehicles
,”
J. Power Sources
,
274
, pp.
582
594
.
27.
Lee
,
S.
,
Kim
,
J.
,
Lee
,
J.
, and
Cho
,
B. H.
,
2008
, “
State-of-Charge and Capacity Estimation of Lithium-Ion Battery Using a New Open-Circuit Voltage Versus State-of-Charge
,”
J. Power Sources
,
185
(
2
), pp.
1367
1373
.
28.
Jarraya
,
I.
,
Masmoudi
,
F.
,
Chabchoub
,
M. H.
, and
Trabelsi
,
H.
,
2019
, “
An Online State of Charge Estimation for Lithium-Ion and Supercapacitor in Hybrid Electric Drive Vehicle
,”
J. Energy Storage
,
26
, p.
100946
.
29.
Wei
,
Z.
,
Zhao
,
J.
,
Ji
,
D.
, and
Tseng
,
K. J.
,
2017
, “
A Multi-Timescale Estimator for Battery State of Charge and Capacity Dual Estimation Based on an Online Identified Model
,”
Appl. Energy
,
204
, pp.
1264
1274
.
30.
Wei
,
Z.
,
Lim
,
T. M.
,
Skyllas-Kazacos
,
M.
,
Wai
,
N.
, and
Tseng
,
K. J.
,
2016
, “
Online State of Charge and Model Parameter Co-Estimation Based on a Novel Multi-timescale Estimator for Vanadium Redox Flow Battery
,”
Appl. Energy
,
172
, pp.
169
179
.
31.
Dai
,
H.
,
Xu
,
T.
,
Zhu
,
L.
,
Wei
,
X.
, and
Sun
,
Z.
,
2016
, “
Adaptive Model Parameter Identification for Large Capacity Li-Ion Batteries on Separated Time Scales
,”
Appl. Energy
,
184
, pp.
119
131
.
32.
Yu
,
C.-X.
,
Xie
,
Y.-M.
,
Sang
,
Z.-Y.
,
Yang
,
S.-Y.
, and
Huang
,
R.
,
2019
, “
State-of-Charge Estimation for Lithium-Ion Battery Using Improved DUKF Based on State-Parameter Separation
,”
Energies
,
12
(
21
), p.
4036
.
33.
Guo
,
F.
,
Hu
,
G.
, and
Hong
,
R.
,
2018
, “
A Parameter Adaptive Method With Dead Zone for State of Charge and Parameter Estimation of Lithium-Ion Batteries
,”
J. Power Sources
,
402
, pp.
174
182
.
34.
Hu
,
X.
,
Li
,
S.
, and
Peng
,
H.
,
2012
, “
A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries
,”
J. Power Sources
,
198
, pp.
359
367
.
35.
Shrivastava
,
P.
,
Soon
,
T. K.
,
Idris
,
M. Y. I. B.
, and
Mekhilef
,
S.
,
2019
, “
Overview of Model-Based Online State-of-Charge Estimation Using Kalman Filter Family for Lithium-Ion Batteries
,”
Renewable Sustainable Energy Rev.
,
113
, pp.
109233
.
36.
Xiong
,
R.
,
Yu
,
Q.
, and
Sun
,
F.
,
18 - 20 June 2017
, “
A Study on the Influence of Two OCV Tests on State of Charge Estimation of Lithium Ion Battery
,”
Proceedings of the 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Siem Reap, Cambodia
,
June 18–20
.
37.
Gao
,
M.
,
Liu
,
Y.
, and
He
,
Z.
,
2011
, “
Battery State of Charge Online Estimation Based on Particle Filter
,”
Proceedings of the 4th International Congress on Image and Signal Processing
,
Shanghai, China
,
Oct. 15–17
, pp.
2233
2236
.
38.
Hannan
,
M. A.
,
Lipu
,
M. S. H.
,
Hussain
,
A.
, and
Mohamed
,
A.
,
2017
, “
A Review of Lithium-Ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
834
854
.
39.
Crisan
,
D.
, and
Doucet
,
A.
,
2002
, “
A Survey of Convergence Results on Particle Filtering Methods for Practitioners
,”
IEEE Trans. Sig. Process.
,
50
(
3
), pp.
736
746
.
40.
Arulampalam
,
M. S.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T.
,
2001
, “
A Tutorial on Particle Filters for On-Line Nonlinear/non-Gaussian Bayesian Tracking
,”
IEEE Trans. Sig. Process.
,
50
(
2
), pp.
174
188
.
41.
Hol
,
J. D.
,
Schon
,
T. B.
, and
Gustafsson
,
F.
,
2006
, “
On Resampling Algorithms for Particle Filters
,”
Proceedings of the IEEE Nonlinear Statistical Signal Processing Workshop
,
Cambridge, UK
,
Sept. 13–15
, pp.
79
82
.
42.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 2. Modeling and Identification
,”
J. Power Sources
,
134
(
2
), pp.
262
276
.
43.
Chai
,
T.
, and
Draxler
,
R. R.
,
2014
, “
Root-Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments Against Avoiding RMSE in the Literature
,”
Geosci. Model Dev.
,
7
(
3
), pp.
1247
1250
.
44.
Ouyang
,
M.
,
Liu
,
G.
,
Lu
,
L.
,
Li
,
J.
, and
Han
,
X.
,
2014
, “
Enhancing the Estimation Accuracy in Low State-of-Charge Area: A Novel Onboard Battery Model Through Surface State of Charge Determination
,”
J. Power Sources
,
270
, pp.
221
237
.
You do not currently have access to this content.