Abstract

In order to ensure the driving safety of electric vehicles and avoid potential failures, it is important to properly estimate the state of health (SOH) of lithium-ion batteries. In this paper, a method of lithium-ion battery SOH estimation based on electrochemical impedance spectroscopy (EIS) and an algorithm fused by Elman neural network and cuckoo search (CS-Elman) is proposed. First, by extracting 19 features of EIS and using principal component analysis to reduce dimension, we obtain four principal components as model inputs. Second, CS algorithm optimizes the weights and thresholds of Elman algorithm. Next, we use the CS-Elman model to estimate the battery SOH and verify the model with the remaining battery data. In addition, we propose a variable temperature estimation model and verify the feasibility of the model between 25 °C and 45 °C. Finally, the experimental results show that the mean absolute error of the method is less than 1.36%.

References

1.
Sulaiman
,
N.
,
Hannan
,
M. A.
,
Mohamed
,
A.
,
Majlan
,
E. H.
, and
Daud
,
W.
,
2015
, “
A Review on Energy Management System for Fuel Cell Hybrid Electric Vehicle: Issues and Challenges
,”
Renew. Sustain. Energy Rev.
,
52
(
12
), pp.
802
814
.
2.
Opitz
,
A.
,
Badami
,
P.
,
Shen
,
L.
,
Vignarooban
,
K.
, and
Kannan
,
A. M.
,
2017
, “
Can Li-Ion Batteries Be the Panacea for Automotive Applications?
Renew. Sustain. Energy Rev.
,
68
(
9
), pp.
685
692
.
3.
Jiang
,
B.
,
Dai
,
H.
,
Wei
,
X.
, and
Xu
,
T.
,
2019
, “
Joint Estimation of Lithium-Ion Battery State of Charge and Capacity Within an Adaptive Variable Multi-Timescale Framework Considering Current Measurement Offset
,”
Appl. Energy
,
253
, p.
113619
.
4.
Fan
,
Y.
,
Xiao
,
F.
,
Li
,
C.
,
Yang
,
G.
, and
Tang
,
X.
,
2020
, “
A Novel Deep Learning Framework for State of Health Estimation of Lithium-Ion Battery
,”
J. Energy Storage
,
32
(
10
), p.
101741
.
5.
Song
,
Z.
,
Hou
,
J.
,
Li
,
X.
,
Wu
,
X.
,
Hu
,
X.
,
Hofmann
,
H.
, and
Sun
,
J.
,
2020
, “
The Sequential Algorithm for Combined State of Charge and State of Health Estimation of Lithium-Ion Battery Based on Active Current Injection
,”
Energy
,
193
(
9
), p.
116732
.
6.
Yang
,
F.
,
Song
,
X.
,
Dong
,
G.
, and
Tsui
,
K. L.
,
2019
, “
A Coulombic Efficiency-Based Model for Prognostics and Health Estimation of Lithium-Ion Batteries
,”
Energy
,
171
(
6
), pp.
1173
1182
.
7.
Wang
,
Z.
,
Zeng
,
S.
,
Guo
,
J.
, and
Qin
,
T.
,
2019
, “
State of Health Estimation of Lithium-Ion Batteries Based on the Constant Voltage Charging Curve
,”
Energy
,
167
, pp.
661
669
.
8.
Bian
,
X.
,
Liu
,
L.
, and
Yan
,
J.
,
2019
, “
A Model for State-of-Health Estimation of Lithium-Ion Batteries Based on Charging Profiles
,”
Energy
,
177
, pp.
57
65
.
9.
Yang
,
J.
,
Xia
,
B.
,
Huang
,
W.
,
Fu
,
Y.
, and
Mi
,
C.
,
2018
, “
Online State-of-Health Estimation for Lithium-Ion Batteries Using Constant-Voltage Charging Current Analysis
,”
Appl. Energy
,
212
, pp.
1589
1600
.
10.
Ma
,
Z.
,
Yang
,
R.
, and
Wang
,
Z.
,
2019
, “
A Novel Data-Model Fusion State-of-Health Estimation Approach for Lithium-Ion Batteries
,”
Appl. Energy
,
237
(
2
), pp.
836
847
.
11.
Lotfi
,
N.
,
Li
,
J.
,
Landers
,
R.
, and
Park
,
J.
,
2017
, “
Li-Ion Battery State of Health Estimation Based on an Improved Single Particle Model
,”
American Control Conference
,
Boston, MA
,
May 24–26
, IEEE, pp.
86
91
.
12.
Hu
,
X.
,
Jiang
,
H.
,
Feng
,
F.
, and
Liu
,
B.
,
2020
, “
An Enhanced Multi-State Estimation Hierarchy for Advanced Lithium-Ion Battery Management
,”
Appl. Energy
,
257
, p.
114019
.
13.
Shu
,
X.
,
Li
,
G.
,
Shen
,
J.
,
Lei
,
Z.
, and
Liu
,
Y.
,
2020
, “
An Adaptive Multi-State Estimation Algorithm for Lithium-Ion Batteries Incorporating Temperature Compensation
,”
Energy
,
207
, p.
118262
.
14.
Ephrem
,
C.
,
Kollmeyer
,
P.
,
Matthias
,
P.
, and
Ali
,
E.
,
2018
, “
State-of-Charge Estimation of Lithium-Ion Batteries Using Deep Neural Networks: A Machine Learning Approach
,”
J. Power Sources
,
400
, pp.
242
255
.
15.
Deng
,
Y.
,
Ying
,
H.
,
Jiaqiang
,
E.
,
Zhu
,
H.
,
Wei
,
K.
,
Chen
,
J.
,
Zhang
,
F.
, and
Liao
,
G.
,
2019
, “
Feature Parameter Extraction and Intelligent Estimation of the State-of-Health of Lithium-Ion Batteries
,”
Energy
,
176
, pp.
91
102
.
16.
Son
,
S.
,
Jeong
,
S.
,
Kwak
,
E.
,
Kim
,
J.
, and
Oh
,
K.
,
2022
, “
Integrated Framework for SoH Estimation of Lithium-Ion Batteries Using Multiphysics Features
,”
Energy
,
238
(
31
), p.
121712
.
17.
Li
,
P.
,
Zhang
,
Z.
,
Xiong
,
Q.
,
Ding
,
B.
, and
Li
,
S.
,
2020
, “
State-of-Health Estimation and Remaining Useful Life Prediction for the Lithium-Ion Battery Based on a Variant Long Short-Term Memory Neural Network
,”
J. Power Sources
,
459
, p.
228069
.
18.
Txa
,
B.
,
Zhen
,
P. C.
, and
Lwa
,
B.
,
2021
, “
A Novel Data-Driven Method for Predicting the Circulating Capacity of Lithium-Ion Battery Under Random Variable Current
,”
Energy
,
218
, p.
119530
.
19.
Zhang
,
S.
,
Zhai
,
B.
,
Guo
,
X.
,
Wang
,
K.
,
Peng
,
N.
, and
Zhang
,
X.
,
2019
, “
Synchronous Estimation of State of Health and Remaining Useful Lifetime for Lithium-Ion Battery Using the Incremental Capacity and Artificial Neural Networks
,”
J. Energy Storage
,
26
(
2
), p.
100951
.
20.
Zhao
,
X.
,
Xuan
,
D.
,
Zhao
,
K.
, and
Li
,
Z.
,
2020
, “
Elman Neural Network Using Ant Colony Optimization Algorithm for Estimating of State of Charge of Lithium-Ion Battery
,”
J. Energy Storage
,
32
(
47
), p.
101789
.
21.
Iurilli
,
P.
,
Brivio
,
C.
, and
Wood
,
V.
,
2021
, “
On the Use of Electrochemical Impedance Spectroscopy to Characterize and Model the Aging Phenomena of Lithium-Ion Batteries: A Critical Review
,”
J. Power Sources
,
505
(
14
), p.
229860
.
22.
Zhuang
,
Q.
,
Yang
,
Z.
,
Zhang
,
L.
, and
Cui
,
Y.
,
2020
, “
Research Progress on Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries
,”
Prog. Chem.
,
32
(
6
), pp.
761
791
.
23.
Zhang
,
Y.
,
Tang
,
Q.
,
Zhang
,
Y.
,
Wang
,
J.
,
Stimming
,
U.
, and
Lee
,
A.
,
2020
, “
Identifying Degradation Patterns of Lithium-Ion Batteries From Impedance Spectroscopy Using Machine Learning
,”
Nat. Commun.
,
11
(
1
), p.
1706
.
24.
Cañas
,
N. A.
,
Hirose
,
K.
,
Pascucci
,
B.
,
Wagner
,
N.
,
Andreas Friedrich
,
K.
, and
Hiesgen
,
R.
,
2013
, “
Investigations of Lithium–Sulfur Batteries Using Electrochemical Impedance Spectroscopy
,”
Electrochim. Acta
,
97
(
5
), pp.
42
51
.
25.
Popp
,
H.
,
Einhorn
,
M.
, and
Conte
,
F. V.
,
2012
, “
Capacity Decrease vs. Impedance Increase of Lithium Batteries. A Comparative Study
,”
Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition EVS26
,
Los Angeles, CA
,
May 4
, pp.
6
9
.
26.
Eddahech
,
A.
,
Briat
,
O.
, and
Vinassa
,
J. M.
,
2015
, “
Performance Comparison of Four Lithium-Ion Battery Technologies Under Calendar Aging
,”
Energy
,
84
, pp.
542
550
.
You do not currently have access to this content.