Abstract

Mechanical abusive loadings, as an inevitable consequence of road accidents, can damage the embedded energy storage system in an electric vehicle and deform its constitutive parts, e.g., the lithium-ion batteries. Therefore, to study the mechanical responses of these batteries and avoid expensive testing equipment and rigorous safety percussions, researchers are propelled toward utilizing numerical models. Computationally cost-efficient homogenized finite element models that represent the whole battery in the form of a uniform medium are the most feasible solution, especially in large-scale battery stacks simulations. Compared to the other form factors of the batteries, prismatic cells have been understudied even though they have higher packaging efficiency, by making optimal use of space. In this article, a comprehensive homogenization and failure calibration method was developed for these prismatic cells. The homogenization was done through extensive uniaxial components tests of the jellyroll and the shell casing. In addition, biaxial tensile tests and simulations were used to calibrate strain-based failure criteria for the components. The calibrated homogenized model is validated in various punch loading scenarios and used in the characterization of the load–displacement responses and failure modes of the stacked cell configurations. In the stacked simulations, due to the cushion-like behavior of the other cells, the failure happens in higher values of displacement compared to a single cell. However, the normalized intrusion percentages for the battery stacks are lower compared to a single battery cell. This emphasizes the importance of the safety assessment of an electric vehicle based on the failure analysis of the battery stacks rather than a single cell. This goal would be feasible through simulations of only homogenized cell models in the stacked configurations, which are elaborated in this article for prismatic cells.

References

1.
Noori
,
M.
,
Gardner
,
S.
, and
Tatari
,
O.
,
2015
, “
Electric Vehicle Cost, Emissions, and Water Footprint in the United States: Development of a Regional Optimization Model
,”
Energy
,
89
, pp.
610
625
.
2.
Tarascon
,
J.-M.
, and
Armand
,
M.
,
2011
,
Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group
,
Nature
,
Singapore
, pp.
171
179
.
3.
Chen
,
Y.
,
2021
, “
Recent Advances of Overcharge Investigation of Lithium-Ion Batteries
,”
Ionics (Kiel)
,
28
(
2
), pp.
1
20
.
4.
Lin
,
C.-K.
,
Ren
,
Y.
,
Amine
,
K.
,
Qin
,
Y.
, and
Chen
,
Z.
,
2013
, “
In Situ High-Energy X-Ray Diffraction to Study Overcharge Abuse of 18650-Size Lithium-Ion Battery
,”
J. Power Sources
,
230
, pp.
32
37
.
5.
Takahashi
,
M.
,
Komatsu
,
K.
, and
Maeda
,
K.
,
2012
, “
The Safety Evaluation Test of Lithium-Ion Batteries in Vehicles-Investigation of Overcharge Test Method
,”
ECS Trans.
,
41
(
39
), pp.
27
41
.
6.
Maleki
,
H.
, and
Howard
,
J. N.
,
2006
, “
Effects of Overdischarge on Performance and Thermal Stability of a Li-Ion Cell
,”
J. Power Sources
,
160
(
2
), pp.
1395
1402
.
7.
Soudbakhsh
,
D.
,
Gilaki
,
M.
,
Lynch
,
W.
,
Zhang
,
P.
,
Choi
,
T.
, and
Sahraei
,
E.
,
2020
, “
Electrical Response of Mechanically Damaged Lithium-Ion Batteries
,”
Energies
,
13
(
17
), p.
4284
.
8.
Keshavarzi
,
M. M.
,
Derakhshan
,
M.
,
Gilaki
,
M.
,
L’Eplattenier
,
P.
,
Caldichoury
,
I.
,
Soudbakhsh
,
D.
, and
Sahraei
,
E.
,
2021
, “
Coupled Electrochemical-Mechanical Modeling of Lithium-Ion Batteries Using Distributed Randle Circuit Model
,”
International Conference on Electrical, Computer and Energy Technologies.
,
Cape Town, South Africa
,
Dec. 9–10
.
9.
Taheri
,
P.
,
Hsieh
,
S.
, and
Bahrami
,
M.
,
2011
, “
Investigating Electrical Contact Resistance Losses in Lithium-Ion Battery Assemblies for Hybrid and Electric Vehicles
,”
J. Power Sources
,
196
(
15
), pp.
6525
6533
.
10.
Li
,
Z.
,
Guo
,
Y.
, and
Zhang
,
P.
,
2022
, “
Effects of the Battery Enclosure on the Thermal Behaviors of Lithium-Ion Battery Module During Thermal Runaway Propagation by External-Heating
,”
J. Energy Storage
,
48
, p.
104002
.
11.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
.
12.
Sahraei
,
E.
,
Campbell
,
J.
, and
Wierzbicki
,
T.
,
2012
, “
Modeling and Short Circuit Detection of 18650 Li-Ion Cells Under Mechanical Abuse Conditions
,”
J. Power Sources
,
220
, pp.
360
372
.
13.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
.
14.
Sahraei
,
E.
,
Hill
,
R.
, and
Wierzbicki
,
T.
,
2012
, “
Calibration and Finite Element Simulation of Pouch Lithium-Ion Batteries for Mechanical Integrity
,”
J. Power Sources
,
201
, pp.
307
321
.
15.
Zhu
,
J.
,
Wierzbicki
,
T.
, and
Li
,
W.
,
2018
, “
A Review of Safety-Focused Mechanical Modeling of Commercial Lithium-Ion Batteries
,”
J. Power Sources
,
378
, pp.
153
168
.
16.
Volck
,
T.
,
Sinz
,
W.
,
Gstrein
,
G.
,
Breitfuss
,
C.
,
Heindl
,
S. F.
,
Steffan
,
H.
,
Freunberger
,
S.
,
Wilkening
,
M.
,
Uitz
,
M.
,
Fink
,
C.
, and
Geier
,
A.
,
2016
, “
Method for Determination of the Internal Short Resistance and Heat Evolution at Different Mechanical Loads of a Lithium ion Battery Cell Based on Dummy Pouch Cells
,”
Batteries
,
2
(
2
), p.
8
.
17.
Duan
,
X.
,
Wang
,
H.
,
Jia
,
Y.
,
Wang
,
L.
,
Liu
,
B.
, and
Xu
,
J.
,
2022
, “
A Multiphysics Understanding of Internal Short Circuit Mechanisms in Lithium-Ion Batteries Upon Mechanical Stress Abuse
,”
Energy Storage Mater.
,
45
, pp.
667
679
.
18.
Avdeev
,
I.
, and
Gilaki
,
M.
,
2014
, “
Structural Analysis and Experimental Characterization of Cylindrical Lithium-Ion Battery Cells Subject to Lateral Impact
,”
J. Power Sources
,
271
, pp.
382
391
.
19.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
X.
, and
Hu
,
D.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
, pp.
180
189
.
20.
Yiding
,
L.
,
Wenwei
,
W.
,
Cheng
,
L.
, and
Fenghao
,
Z.
,
2021
, “
High-Efficiency Multiphysics Coupling Framework for Cylindrical Lithium-Ion Battery Under Mechanical Abuse
,”
J. Cleaner Prod.
,
286
, p.
125451
.
21.
Sheikh
,
M.
,
Elmarakbi
,
M.
,
Rehman
,
S.
, and
Elmarakbi
,
A.
,
2021
, “
Internal Short Circuit Analysis of Cylindrical Lithium-Ion Cells Due to Structural Failure
,”
J. Electrochem. Soc.
,
168
(
3
), p.
30526
.
22.
Gilaki
,
M.
,
Song
,
Y.
, and
Sahraei
,
E.
,
2022
, “
Homogenized Characterization of Cylindrical Li-Ion Battery Cells Using Elliptical Approximation
,”
Int. J. Energy Res.
,
46
(
5
), pp.
5908
5923
.
23.
Song
,
Y.
,
Gilaki
,
M.
,
Keshavarzi
,
M. M.
, and
Sahraei
,
E.
,
2022
, “
A Universal Anisotropic Model for a Lithium-Ion Cylindrical Cell Validated Under Axial, Lateral, and Bending Loads
,”
Energy Sci. Eng.
,
10
(
4
), pp.
1431
1448
.
24.
Kisters
,
T.
,
Gilaki
,
M.
,
Nau
,
S.
, and
Sahraei
,
E.
,
2022
, “
Modeling of Dynamic Mechanical Response of Li-Ion Cells With Homogenized Electrolyte-Solid Interactions
,”
J. Energy Storage
,
49
, p.
104069
.
25.
Breitfuss
,
C.
,
Sinz
,
W.
,
Feist
,
F.
,
Gstrein
,
G.
,
Lichtenegger
,
B.
,
Knauder
,
C.
,
Ellersdorfer
,
C.
,
Moser
,
J.
,
Steffan
,
H.
,
Stadler
,
M.
,
Gollob
,
P.
, and
Hennige
,
V.
,
2013
, “
A ‘Microscopic’structural Mechanics FE Model of a Lithium-Ion Pouch Cell for Quasi-Static Load Cases
,”
SAE Int. J. Passenger Cars-Mech. Syst.
,
6
(
2
), pp.
1044
1054
.
26.
Keshavarzi
,
M. M.
,
Gilaki
,
M.
, and
Sahraei
,
E.
,
2022
, “
Characterization of In-Situ Material Properties of Pouch Lithium-Ion Batteries in Tension From Three-Point Bending Tests
,”
Int. J. Mech. Sci.
,
219
, p.
107090
.
27.
Choi
,
H. Y.
,
Lee
,
I.
,
Lee
,
J. S.
,
Kim
,
Y. M.
, and
Kim
,
H.
,
2013
, “
A Study on Mechanical Characteristics of Lithium-Polymer Pouch Cell Battery for Electric Vehicle
,”
International Technical Conference on the Enhanced Safety of Vehicles
,
Seoul
, South Korea, May 27–30, pp.
1
6
.
28.
Sahraei
,
E.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2014
, “
Characterizing and Modeling Mechanical Properties and Onset of Short Circuit for Three Types of Lithium-Ion Pouch Cells
,”
J. Power Sources
,
247
, pp.
503
516
.
29.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2015
, “
Coupled Mechanical-Electrical-Thermal Modeling for Short-Circuit Prediction in a Lithium-Ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
, pp.
102
113
.
30.
Chung
,
S. H.
,
Tancogne-Dejean
,
T.
,
Zhu
,
J.
,
Luo
,
H.
, and
Wierzbicki
,
T.
,
2018
, “
Failure in Lithium-Ion Batteries Under Transverse Indentation Loading
,”
J. Power Sources
,
389
, pp.
148
159
.
31.
Kermani
,
G.
,
Dixon
,
B.
, and
Sahraei
,
E.
,
2019
, “
Elliptical Lithium-Ion Batteries: Transverse and Axial Loadings Under Wet/Dry Conditions
,”
Energy Sci. Eng.
,
7
(
3
), pp.
890
898
.
32.
Kisters
,
T.
,
Keshavarzi
,
M.
,
Kuder
,
J.
, and
Sahraei
,
E.
,
2021
, “
Effects of Electrolyte, Thickness and Casing Stiffness on the Dynamic Response of Lithium-Ion Battery Cells
,”
J Energy Rep.
,
7
, pp.
6451
6461
.
33.
Kermani
,
G.
, and
Sahraei
,
E.
,
2019
, “
Dynamic Impact Response of Lithium-Ion Batteries, Constitutive Properties and Failure Model
,”
RSC Adv.
,
9
(
5
), pp.
2464
2473
.
34.
Kermani
,
G.
,
Keshavarzi
,
M.
, and
Sahraei
,
E.
,
2021
, “
Deformation of Lithium-Ion Batteries Under Axial Loading: Analytical Model and Representative Volume Element
,”
J. Energy Rep.
,
7
, pp.
2849
2861
.
35.
Deng
,
J.
,
Smith
,
I.
,
Bae
,
C.
,
Rairigh
,
P.
,
Miller
,
T.
,
Surampudi
,
B.
,
L’Eplattenier
,
P.
, and
Caldichoury
,
I.
,
2020
, “
Impact Modeling and Testing of Pouch and Prismatic Cells
,”
J. Electrochem. Soc.
,
167
(
9
), pp.
090550
.
36.
Wang
,
H.
,
Simunovic
,
S.
,
Maleki
,
H.
,
Howard
,
J. N.
, and
Hallmark
,
J. A.
,
2016
, “
Internal Configuration of Prismatic Lithium-Ion Cells at the Onset of Mechanically Induced Short Circuit
,”
J. Power Sources
,
306
, pp.
424
430
.
37.
Chen
,
X.
,
Wang
,
T.
,
Zhang
,
Y.
,
Ji
,
H.
,
Ji
,
Y.
,
Yuan
,
Q.
, and
Li
,
L.
,
2020
, “
Dynamic Behavior and Modeling of Prismatic Lithium-Ion Battery
,”
Int. J. Energy Res.
,
44
(
4
), pp.
2984
2997
.
38.
Chen
,
X.
,
Yuan
,
Q.
,
Wang
,
T.
,
Ji
,
H.
,
Ji
,
Y.
,
Li
,
L.
, and
Liu
,
Y.
,
2020
, “
Experimental Study on the Dynamic Behavior of Prismatic Lithium-Ion Battery Upon Repeated Impact
,”
Eng. Failure Anal.
,
115
, p.
104667
.
39.
Wenwei
,
W.
,
Yiding
,
L.
,
Cheng
,
L.
,
Yuefeng
,
S.
, and
Sheng
,
Y.
,
2019
, “
State of Charge-Dependent Failure Prediction Model for Cylindrical Lithium-Ion Batteries Under Mechanical Abuse
,”
Appl. Energy
,
251
, p.
113365
.
40.
Li
,
W.
,
Xia
,
Y.
,
Zhu
,
J.
, and
Luo
,
H.
,
2018
, “
State-of-Charge Dependence of Mechanical Response of Lithium-Ion Batteries: A Result of Internal Stress
,”
J. Electrochem. Soc.
,
165
(
7
), pp.
A1537
A1546
.
41.
Gilaki
,
M.
, and
Sahraei
,
E.
,
2019
, “
Effects of Temperature on Mechanical Response of Lithium Ion Batteries to External Abusive Loads
,”
SAE Technical Paper
, SAE Mobilus, Detroit, MI, Apr. 9–11, p. 1002.
42.
Kalnaus
,
S.
,
Wang
,
Y.
,
Li
,
J.
,
Kumar
,
A.
, and
Turner
,
J. A.
,
2018
, “
Temperature and Strain Rate Dependent Behavior of Polymer Separator for Li-Ion Batteries
,”
Extreme Mech. Lett.
,
20
, pp.
73
80
.
43.
Kisters
,
T.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2017
, “
Dynamic Impact Tests on Lithium-Ion Cells
,”
Int. J. Impact Eng.
,
108
, pp.
205
216
.
44.
Xi
,
S.
,
Zhao
,
Q.
,
Chang
,
L.
,
Huang
,
X.
, and
Cai
,
Z.
,
2020
, “
The Dynamic Failure Mechanism of a Lithium-Ion Battery at Different Impact Velocity
,”
Eng. Failure Anal.
,
116
, p.
104747
.
45.
Zhu
,
J.
,
Zhang
,
X.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2016
, “
Deformation and Failure Mechanisms of 18650 Battery Cells Under Axial Compression
,”
J. Power Sources
,
336
, pp.
332
340
.
46.
Pan
,
Z.
,
Li
,
W.
, and
Xia
,
Y.
,
2020
, “
Experiments and 3D Detailed Modeling for a Pouch Battery Cell Under Impact Loading
,”
J. Energy Storage
,
27
, p.
101016
.
47.
Sahraei
,
E.
,
Bosco
,
E.
,
Dixon
,
B.
, and
Lai
,
B.
,
2016
, “
Microscale Failure Mechanisms Leading to Internal Short Circuit in Li-Ion Batteries Under Complex Loading Scenarios
,”
J. Power Sources
,
319
(
1 July 2016
), pp.
56
65
.
48.
Li
,
W.
, and
Zhu
,
J.
,
2020
, “
A Large Deformation and Fracture Model of Lithium-Ion Battery Cells Treated as a Homogenized Medium
,”
J. Electrochem. Soc.
,
167
(
12
), p.
120504
.
49.
Wang
,
W.
,
Yang
,
S.
, and
Lin
,
C.
,
2017
, “
Clay-Like Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells
,”
Appl. Energy
,
196
, pp.
249
258
.
50.
Sahraei
,
E.
,
Kahn
,
M.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2015
, “
Modelling of Cracks Developed in Lithium-Ion Cells Under Mechanical Loading
,”
Rsc. Adv.
,
5
(
98
), pp.
80369
80380
.
51.
Zhang
,
X.
,
Sahraei
,
E.
, and
Wang
,
K.
,
2016
, “
Li-Ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts
,”
Sci. Rep.
,
6
(
1
), p.
32578
.
52.
Dixon
,
L. A. B.
,
2015
, “
Material Characterization of Lithium Ion Batteries for Crash Safety
,”
MIT Thesis
, http://dspace.mit.edu/handle/1721.1/7582
You do not currently have access to this content.