Two plasma spray techniques have been developed to produce membrane-type solid oxide fuel cell (SOFC) units with the advantages of consecutive integrated cell fabrication, high efficiency, good cost effectiveness and microstructure tailoring capability. The atmospheric plasma spray (APS) and solution precursor plasma spray (SPPS) processes have demonstrated their capabilities to produce dense electrolyte layers as well as porous electrode layers that are designed particularly for intermediate temperature SOFCs. With a universal plasma spray system, the integrated fabrication of a dense La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte, a porous La0.8Sr0.2MnO3 cathode and a porous Ni+yttrium stabilized zirconia anode was produced using an optimal APS route. SPPS process has demonstrated more flexibility in materials, microstructures, porosities and overall thickness, and has been used successfully to produce a thin 40mol%La2O3-doped CeO2 (LDC40) interlayer (5μm) and a high-porosity Ni+LDC40 anode layer, respectively. In this work we will present the deposition of a variety of electrolyte and electrode layers applied by air plasma spraying or solution precursor plasma spraying. The merits of the two techniques, microstructures of the electrolyte and electrode layers, and performances of the single SOFC units have been evaluated and summarized.

1.
Hooie
,
D. T.
, 1993, “
Status of SOFC Development in U.S.A.
,”
Proc. Electrochemical Society
, pp.
93
94
.
2.
Singhal
,
S. C.
, 2000, “
Science and Technology of Solid-Oxide Fuel Cells
,”
MRS Bull.
0883-7694,
25
, pp.
16
21
.
3.
Steele
,
B. C. H.
, 2000, “
Materials for IT-SOFC Stacks 35years R&D: the Inevitability of Gradualness
,”
Solid State Ionics
0167-2738,
134
(
1, 2
), pp.
3
20
.
4.
Williams
,
M. C.
, 1999, “
Status of Solid Oxide Fuel Cell Development and Commercialization in the U.S.
,”
Proc. 6th Int. Symp. on Solid Oxide Fuel Cells
, p.
3
.
5.
Singh
,
P. M.
, and
Nguyen
,
Q.
, 2004, “
Solid Oxide Fuel Cells: Technology Status
,”
Int. J. Appl. Ceram. Technol.
1546-542X,
1
(
1
), pp.
5
15
.
6.
Khaleel
,
M. A.
, and
Selman
,
J. R.
, 2003, “
Cell, Stack and System Modeling
,”
High Temperature Solid Oxide Fuels Cells
, pp.
291
331
.
7.
Williams
,
M. C.
, 2001, “
Status and Market Applications for the Solid Oxide Fuel Cell in the U.S.—A New Direction
,”
Proc. Electrochemical Society
, pp.
3
7
.
8.
Schiller
,
G.
,
Henne
,
R.
,
Lang
,
M.
, and
Mueller
,
M.
, 2003, “
Development of Solid Oxide Fuel Cells (SOFC) for Stationary and Mobile Applications by Applying Plasma Deposition Processes
,”
Mater. Sci. Forum
0255-5476, pp.
426
432
.
9.
Jones
,
F. G. E.
, and
Irvine
,
J. T. S.
, 2002, “
Preparation of Thin Films Using the Tape-Casting Process for Use in the Solid Oxide Fuel Cell
,”
Ionics
0947-7047,
8
(
5–6
), pp.
339
343
.
10.
Bitterlich
,
B.
,
Lutz
,
C.
, and
Roosen
,
A.
, 2001, “
Preparation of Planar SOFC Components Via Tape Casting of Aqueous Systems, Lamination and Cofiring
,”
Ceramic Materials and Components for Engines, (International Symposium), 7th, Goslar, Germany
, pp.
51
56
.
11.
Lin
,
Y. S.
,
De Haart
,
L. G. J.
,
De Vries
,
K. J.
, and
Burggraaf
,
A. J.
, 1989, “
Thin Electrolyte Layers for SOFC Via Modification of Ceramic Membranes by CVD and EVD
.”
Proc. Electrochemical Society
, pp.
89
11
.
12.
Van Dieten
,
V. E. J.
, and
Schoonman
,
J.
, 1992, “
Thin Film Techniques for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
57
(
1–2
), pp.
141
9
.
13.
Ma
,
X. Q.
,
Hui
,
S.
,
Zhang
,
H.
,
Dal
,
J.
,
Roth
,
J.
,
Xiao
,
T. D.
, and
Reisner
,
D. E.
, 2003, “
Intermediate Temperature SOFC Based on Fully Integrated Plasma Sprayed Components
,”
Proc. of the Int. Thermal Spray Conf.
, Vol.
1
, pp.
163
168
.
14.
Kuo
,
L. J. H.
,
Vora
,
S. D.
, and
Singhal
,
S. C.
, 1997, “
Plasma Spraying of Lanthanum Chromite Films for Solid Oxide Fuel Cell Interconnection Application
,”
J. Am. Ceram. Soc.
0002-7820,
80
(
3
), pp.
589
593
.
15.
Henne
,
R.
,
Lang
,
M.
,
Mueller
,
M.
,
Ruckdaeschel
,
R.
, and
Schiller
,
G.
, 2003, “
Plasma Deposition Technology for Development and Production of High Temperature Fuel Cells (SOFC)
,”
10th Int. Ceramics Congress
, Part C, pp.
405
420
.
16.
Kuo
,
L. J. H.
,
Vora
,
S. D.
, and
Singhal
,
S. C.
, 1997, “
Plasma Spraying of Lanthanum Chromite Films for Solid Oxide Fuel Cell Interconnection Application
,”
J. Am. Ceram. Soc.
0002-7820,
80
, pp.
589
593
.
17.
Okumura
,
K.
,
Aihara
,
Y.
,
Ito
,
S.
, and
Kawasaki
,
S.
, 2000, “
Development of Thermal Spraying-Sintering Technology for Solid Oxide Fuel Cells
,”
J. Therm. Spray Technol.
1059-9630,
9
, pp.
354
359
.
18.
Jansing
,
T.
,
Fleck
,
R.
,
Decker
,
J.
, and
Verpoort
,
C.
, 1999, “
Separation and Insulating Layers of Atmospheric Plasma-Sprayed Ceramics for High Temperature Fuel Cells-Development and Implementation
,”
United Thermal Spray Conference, ASM Thermal Spray Society
, pp.
69
75
.
19.
Tsukuda
,
H.
,
Notomi
,
A.
, and
Hisatome
,
N.
, 2000, “
Application of Plasma Spraying to Tubular-Type Solid Oxide Fuel Cells Production
,”
J. Therm. Spray Technol.
1059-9630,
9
, pp.
364
368
.
20.
Schiller
,
G.
,
Henne
,
R.
,
Lang
,
M.
,
Ruckdaschel
,
R.
, and
Schaper
,
S.
, 2000, “
Development of Vacuum Plasma Sprayed Thin-Film SOFC for Reduced Operating Temperature
,”
Fuel Cells Bull.
,
3
, pp.
7
12
.
21.
Huang
,
K.
,
Feng
,
M.
,
Goodenough
,
B. J.
, and
Milliken
,
C.
, 1997, “
Electrode Performance Test on Single Ceramic Fuel Cells Using as Electrolyte Sr- and Mg-Doped LaGaO3
,”
J. Electrochem. Soc.
0013-4651,
144
, pp.
3620
3624
.
22.
Ishihara
,
T.
,
Matsuda
,
H.
, and
Takita
,
Y.
, 1994, “
Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor
,”
J. Am. Chem. Soc.
0002-7863,
116
, pp.
3801
3803
.
23.
Feng
,
M.
,
Goodenough
,
B. J.
,
Huang
,
K.
, and
Milliken
,
C.
, 1996, “
Fuel Cells With Doped Lanthanum Gallate Electrolyte
,”
J. Power Sources
0378-7753,
63
, pp.
47
51
.
24.
Sebastian
,
L.
,
Shukla
,
A. K.
, and
Gopalakrishnan
,
J.
, 2000, “
La0.9Sr0.1Ga0.8M0.2O3−σ (M=Mn, Co, Ni, Cu or Zn): Transition Metal-Substituted Derivatives of Lanthanum-Strontium-Gallium-Magnesium (LSGM) Perovskite Oxide Ion Conductor
,”
Bull. Mater. Sci.
0250-4707,
23
(
3
), pp.
169
173
.
25.
Huang
,
K.
,
Feng
,
M.
,
Goodenough
,
J. B.
, and
Milliken
,
C.
, 1997, “
Electrode Performance Test on Single Ceramic Fuel Cells Using as Electrolyte Sr- and Mg-Doped LaGaO3
,”
J. Electrochem. Soc.
0013-4651,
144
(
10
), pp.
3620
3624
.
26.
Maffei
,
N.
, and
de Silveira
,
G.
, 2003, “
Interfacial Layers in Tape Cast Anode-Supported Doped Lanthanum Gallate SOFC Elements
,”
Solid State Ionics
0167-2738,
159
(
3, 4
), pp.
209
216
.
27.
Zhang
,
X.
,
Ohara
,
S.
,
Okawa
,
H.
,
Maric
,
R.
, and
Fukui
,
T.
, 2001, “
Interactions of a La0.9Sr0.1Ga0.8Mg0.2O3−δ electrolyte with Fe2O3, Co2O3 and NiO anode materials
,”
Solid State Ionics
0167-2738,
139
, pp.
145
152
.
28.
Li
,
Z.
, 1992, “
Perovskite La1−xSrxMnO3−δ als Kkathodenwerkstoff Fur Hochtemperatur Brennstoffzelle-Pulverherstellung, Beschichtung Und Charakterisierung
,” Jul Report (in German).
29.
Li
,
Z.
,
Mallener
,
W.
,
Fuerst
,
L.
,
Stover
,
D.
, and
Scherberich
,
F.
, 1993, “
Plasma Sprayed Perovskite of the Composition La1−xSrxMnO3−δ: Phase Analysis and Electrical Conductivity
,”
Proc. 1993 National Thermal Spray Conf.
, pp.
343
346
.
30.
Konstantinov
,
K.
,
Stambolova
,
I.
,
Peshev
,
P.
,
Darriet
,
B.
, and
Vassilev
,
S.
, 2000, “
Preparation of Ceria Films by Spray Pyrolysis Method
,”
Int. J. Inorg. Mater.
1466-6049,
2
(
2–3
), pp.
277
280
.
31.
Madler
,
L.
,
Stark
,
W. J.
, and
Pratsinis
,
S. E.
, 2002, “
Flame-Made Ceria Nanoparticles
,”
J. Mater. Res.
0884-2914,
17
(
6
), pp.
1356
1362
.
32.
Wilden
,
J.
, and
Wank
,
A.
, 2001, “
Application Study on Ceria-Based Thermal Barrier Coatings
,”
Materialwiss. Werkstofftech.
0933-5137,
32
(
8
), pp.
654
659
.
33.
Fukui
,
T.
,
Ohara
,
S.
,
Murata
,
K.
,
Yoshida
,
H.
,
Miura
,
K.
, and
Inagaki
,
T.
, 2002, “
Performance of Intermediate Temperature Solid Oxide Fuel Cells With La(Sr)Ga(Mg)O3 Electrolyte Film
,”
J. Power Sources
0378-7753,
106
, pp.
142
145
.
You do not currently have access to this content.