Abstract

This paper presents a novel technique based on an adaptive approach of redacted extended Kalman filter (REKF) assimilating fuzzy logic features for measuring the state-of-charge (SoC) of lithium-ion batteries. Accurately determining SoC is crucial for maximizing battery capacity and performance. However, existing extended Kalman filtering algorithms suffer from issues such as inadequate noise resistance and noise sensitivity, as well as difficulties in selecting the forgetting factor. The aforementioned REKF technique addresses these challenges adequately for accurate measurement of SoC. The proposed method involves establishing a Thevenin equivalent circuit model and using the recursive least squares with forgetting factor (RLSFF) to identify model parameters. Furthermore, an evaluation factor is established, and to adaptively adjust the value of the forgetting factor, fuzzy control is utilized, which enhances the extended Kalman filtering algorithm with noise adaptive algorithm features to estimate the SoC accurately. This modified algorithm considers the identification results from the parameter estimation step and executes them circularly to achieve precise SoC estimation. Results demonstrate that the proposed method has excellent robustness and estimation accuracy compared to other filtering algorithms, even under variable working conditions, including a wide range of state-of-health (SOH) and temperature. The proposed method is expected to enhance the performance of battery management systems for various applications.

References

1.
Yang
,
B.
,
Wang
,
J.
,
Cao
,
P.
,
Zhu
,
T.
,
Shu
,
H.
,
Chen
,
J.
,
Zhang
,
J.
, and
Zhu
,
J.
et al
2021
, “
Classification, Summarization and Perspectives on State-of-Charge Estimation of Lithium-Ion Batteries Used in Electric Vehicles: A Critical Comprehensive Survey
,”
J. Energy Storage
,
39
, p.
102572
.
2.
Wang
,
Z.
,
Feng
,
G.
,
Zhen
,
D.
,
Gu
,
F.
, and
Ball
,
A.
,
2021
, “
A Review on Online State of Charge and State of Health Estimation for Lithium-Ion Batteries in Electric Vehicles
,”
Energy Rep.
,
7
, pp.
5141
5161
.
3.
Yang
,
F.
,
Shi
,
D.
,
Mao,
Q.
, and
Lam
,
K. H.
,
2023
, “
Scientometric Research and Critical Analysis of Battery State-of-Charge Estimation
,”
Energy Rep.
,
58
, p.
106283
.
4.
Hasan
,
M. K.
,
Mahmud
,
M.
,
Ahasan Habib
,
A. K. M.
,
Motakabber
,
S. M. A.
, and
Islam
,
S.
,
2020
, “
Review of Electric Vehicle Energy Storage and Management System: Standards, Issues, and Challenges
,”
J. Energy Storage
,
41
, p.
102940
.
5.
Zhang
,
M.
, and
Fan
,
X.
,
2020
, “
Review on the State of Charge Estimation Methods for Electric Vehicle Battery
,”
World Electr. Veh. J.
,
11
(
1
), pp.
1
17
.
6.
How
,
D. N. T.
,
Hannan
,
M. A.
,
Hossain Lipu
,
M. S.
, and
Ker
,
P. J.
,
2019
, “
State of Charge Estimation for Lithium-Ion Batteries Using Model-Based and Data-Driven Methods: A Review
,”
IEEE Access
,
7
, pp.
136116
136136
.
7.
Jeon
,
S.
,
Yun
,
J. J.
, and
Bae
,
S.
,
2015
, “
Comparative Study on the Battery State-of-Charge Estimation Method
,”
Indian J. Sci. Technol.
,
8
(
26
), pp.
1
6
.
8.
Xiong
,
X.
,
Wang
,
S. L.
,
Fernandez
,
C.
,
Yu
,
C. M.
,
Zou
,
C. Y.
, and
Jiang
,
C.
,
2020
, “
A Novel Practical State of Charge Estimation Method: An Adaptive Improved Ampere-Hour Method Based on Composite Correction Factor
,”
Int. J. Energy Res.
,
44
(
14
), pp.
11385
11404
.
9.
Chen
,
N.
,
Zhang
,
P.
,
Dai
,
J.
, and
Gui
,
W.
,
2020
, “
Estimating the State-of-Charge of Lithium-Ion Battery Using an H-Infinity Observer Based on Electrochemical Impedance Model
,”
IEEE Access
,
8
, pp.
26872
26884
.
10.
Chang
,
J. J.
,
Zeng
,
X. F.
, and
Wan
,
T. L.
,
2019
, “
Real-Time Measurement of Lithium-Ion Batteries’ State-of-Charge Based on Air-Coupled Ultrasound
,”
AIP Adv.
,
9
(
8
), p. 085116.
11.
Xiong
,
R.
,
Tian
,
J.
,
Shen
,
W.
, and
Sun
,
F.
,
2019
, “
A Novel Fractional Order Model for State of Charge Estimation in Lithium Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
68
(
5
), pp.
4130
4139
.
12.
Xiang
,
L.
,
Cai
,
L.
,
Dai
,
N.
,
Gao
,
L.
,
Lei
,
G.
,
Li
,
J.
, and
Deng
,
M.
,
2022
, “
State of Charge Estimation of Lithium-Ion Batteries Based on an Improved Sage-Husa Extended Kalman Filter Algorithm
,”
World Electr. Veh. J.
,
13
(
11
), p.
220
.
13.
Ali
,
M. U.
,
Zafar
,
A.
,
Nengroo
,
S. H.
,
Hussain
,
S.
,
Alvi
,
M. J.
, and
Kim
,
H. J.
,
2019
, “
Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation
,”
Energies
,
12
(
3
), p.
446
.
14.
Ling
,
L.
, and
Wei
,
Y.
,
2021
, “
State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries Based on Dual Fractional-Order Extended Kalman Filter and Online Parameter Identification
,”
IEEE Access
,
9
, pp.
47588
47602
.
15.
Wang
,
H.
,
Chen
,
Y.
,
Luo
,
J.
,
Liu
,
C.
,
Gao
,
P.
, and
Chen
,
G.
,
2021
, “
State of Charge Estimation of Li-Ion Battery Based on Improved Extended Kalman Filter
,”
2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)
,
Chongqing, China
,
June 18–20
, pp.
950
953
.
16.
Zhao
,
L.
,
Liu
,
Z.
, and
Ji
,
G.
,
2018
, “
Lithium-Ion Battery State of Charge Estimation With Model Parameters Adaptation Using H∞ Extended Kalman Filter
,”
Control Eng. Pract.
,
81
, pp.
114
128
.
17.
Meng
,
J.
,
Ricco
,
M.
,
Acharya
,
A. B.
,
Luo
,
G.
,
Swierczynski
,
M.
,
Stroe
,
D.-I.
,
Teodorescu
,
R.
,
2018
, “
Low-Complexity Online Estimation for LiFePO4 Battery State of Charge in Electric Vehicles
,”
J. Power Sources
,
395
, pp.
280
288
.
18.
Xie
,
F.
,
Wang
,
S.
,
Xie
,
Y.
,
Fernandezb
,
C.
,
Li
,
X.
, and
Zou
,
C.
,
2020
, “
A Novel Battery State of Charge Estimation Based on the Joint Unscented Kalman Filter and Support Vector Machine Algorithms
,”
Int. J. Electrochem. Sci.
,
15
(
8
), pp.
7935
7953
.
19.
Sahoo
,
S. K.
, and
Kishore
,
N. K.
,
2020
, “
Battery State-of-Charge-Based Control and Frequency Regulation in the MMG System Using Fuzzy Logic
,”
IET Gener. Transm. Distrib.
,
14
(
14
), pp.
2698
2709
.
20.
Ismail
,
M.
,
Dlyma
,
R.
,
Elrakaybi
,
A.
,
Ahmed
,
R.
, and
Habibi
,
S.
,
2017
, “
Battery State of Charge Estimation Using an Artificial Neural Network
,”
2017 IEEE Transportation Electrification Conference and Expo (ITEC)
,
Chicago, IL
,
June 20–24
, pp.
342
349
,
21.
Yang
,
F.
,
Li
,
W.
,
Li
,
C.
, and
Miao
,
Q.
,
2019
, “
State-of-Charge Estimation of Lithium-Ion Batteries Based on Gated Recurrent Neural Network
,”
Energy
,
175
, pp.
66
75
.
22.
Hu
,
L.
,
Hu
,
X.
,
Che
,
Y.
,
Feng
,
F.
,
Lin
,
X.
, and
Zhang
,
Z.
,
2020
, “
Reliable State of Charge Estimation of Battery Packs Using Fuzzy Adaptive Federated Filtering
,”
Appl. Energy
,
262
, p.
114569
.
23.
Wei
,
K.
,
Wu
,
J.
,
Ma
,
W.
, and
Li
,
H.
,
2019
, “
State of Charge Prediction for UAVs Based on Support Vector Machine
,”
J. Eng.
,
2019
(
23
), pp.
9133
9136
.
24.
Xia
,
B.
,
Lao
,
Z.
,
Zhang
,
R.
,
Tian
,
Y.
,
Chen
,
G.
,
Sun
,
Z.
,
Wang
,
W.
, et al
,
2018
, “
Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter
,”
Energies
,
11
(
1
), p.
3
.
25.
Yuan
,
H.
,
Han
,
Y.
,
Zhou
,
Z.
,
Chen
,
J.
,
Du
,
J.
, and
Pei
,
H.
,
2022
, “
State of Charge Dual Estimation of a Li-ion Battery Based on Variable Forgetting Factor Recursive Least Square and Multi-Innovation Unscented Kalman Filter Algorithm
,”
Energies
,
15
(
4
), p. 1529.
26.
Ren
,
P.
,
Wang
,
S.
,
Huang
,
J.
,
Chen
,
X.
,
He
,
M.
, and
Cao
,
W.
,
2022
, “
Novel Co-estimation Strategy Based on Forgetting Factor Dual Particle Filter Algorithm for the State of Charge and State of Health of the Lithium-Ion Battery
,”
Int. J. Energy Res.
,
46
(
2
), pp.
1094
1107
.
27.
Wu
,
M.
,
Qin
,
L.
,
Wu
,
G.
,
Huang
,
Y.
, and
Shi
,
C.
,
2021
, “
State of Charge Estimation of Power Lithium-Ion Battery Based on a Variable Forgetting Factor Adaptive Kalman Filter
,”
J. Energy Storage
,
41
, p.
102841
.
28.
Miniguano
,
H.
,
Barrado
,
A.
,
Lazaro
,
A.
,
Zumel
,
P.
, and
Fernandez
,
C.
,
2020
, “
General Parameter Identification Procedure and Comparative Study of Li-Ion Battery Models
,”
IEEE Trans. Veh. Technol.
,
69
(
1
), pp.
235
245
.
29.
Susanna
,
S.
,
Dewangga
,
B. R.
,
Wahyungoro
,
O.
, and
Cahyadi
,
A. I.
,
2019
, “
Comparison of Simple Battery Model and Thevenin Battery Model for SOC Estimation Based on OCV Method
,”
2019 International Conference on Information and Communications Technology (ICOIACT)
,
Yogyakarta, Indonesia
,
July 24–25
, pp.
738
743
.
30.
Lee
,
J.
, and
Oh
,
K.
,
2023
, “
Data-Driven Adaptive Steady-State-Integral-Derivative Controller Using Recursive Least Squares With Performance Conditions
,”
IEEE Access
,
11
, pp.
54616
54628
.
31.
Chen
,
Y.
,
Li
,
C.
, and
Yang
,
J.
,
2023
, “
Design and Application of Nagar-Bardini Structure-Based Interval Type-2 Fuzzy Logic Systems Optimized With the Combination of Backpropagation Algorithms and Recursive Least Square Algorithms
,”
Expert Syst. Appl.
,
211
, p.
118596
.
32.
Wei
,
C.
,
Zhang
,
X.
,
Xu
,
L.
,
Ding
,
F.
, and
Yang
,
E.
,
2022
, “
Overall Recursive Least Squares and Overall Stochastic Gradient Algorithms and Their Convergence for Feedback Nonlinear Controlled Autoregressive Systems
,”
Int. J. Robust Nonlinear Control
,
32
(
9
), pp.
5534
5554
.
33.
Lao
,
Z.
,
Xia
,
B.
,
Wang
,
W.
,
Sun
,
W.
,
Lai
,
Y.
, and
Wang
,
M.
,
2018
, “
A Novel Method for Lithium-Ion Battery Online Parameter Identification Based on Variable Forgetting Factor Recursive Least Squares
,”
Energies
,
11
(
6
), p.
1358
.
34.
Barcellona
,
S.
, and
Piegari
,
L.
,
2017
, “
Lithium Ion Battery Models and Parameter Identification Techniques
,”
Energies
,
10
(
12
), p.
2007
.
35.
Zdenko Kovacic
,
S. B.
,
2017
,
Fuzzy Controller Design Theory and Applications
, 1st ed.,
Taylor & Francis Group
,
Boca Raton, FL
.
36.
Muraveva
,
E. A.
,
Shulaeva
,
E. A.
,
Charikov
,
P. N.
,
Kadyrov
,
R. R.
,
Sharipov
,
M. I.
,
Bondarev
,
A. V.
, and
Shishkina
,
A. F.
,
2017
, “
Optimization of the Structure of the Control System Using the Fuzzy Controller
,”
Procedia Comput. Sci.
,
120
, pp.
487
494
.
37.
Zhang
,
Z.
,
Jiang
,
L.
,
Zhang
,
L.
, and
Huang
,
C.
,
2021
, “
State-of-Charge Estimation of Lithium-Ion Battery Pack by Using an Adaptive Extended Kalman Filter for Electric Vehicles
,”
J. Energy Storage
,
37
, p.
102457
.
38.
Chen
,
D.
,
Zhang
,
Y.
, and
Li
,
S.
,
2018
, “
Tracking Control of Robot Manipulators With Unknown Models: A Jacobian-Matrix-Adaption Method
,”
IEEE Trans. Ind. Informatics
,
14
(
7
), pp.
3044
3053
.
39.
Wei
,
Z.
,
Dong
,
G.
,
Zhang
,
X.
,
Pou
,
J.
,
Quan
,
Z.
, and
He
,
H.
,
2021
, “
Noise-Immune Model Identification and State-of-Charge Estimation for Lithium-Ion Battery Using Bilinear Parameterization
,”
IEEE Trans. Ind. Electron.
,
68
(
1
), pp.
312
323
.
40.
Wang
,
S.
,
Fernandez
,
C.
,
Yu
,
C.
,
Fan
,
Y.
,
Cao
,
W.
, and
Stroe
,
D. I.
,
2020
, “
A Novel Charged State Prediction Method of the Lithium Ion Battery Packs Based on the Composite Equivalent Modeling and Improved Splice Kalman Filtering Algorithm
,”
J. Power Sources
,
471
, p.
228450
.
41.
Yang
,
S.
,
Zhou
,
S.
,
Hua
,
Y.
,
Zhou
,
X.
,
Liu
,
X.
,
Pan
,
Y.
,
Ling
,
H.
, and
Wu
,
B.
,
2021
, “
A Parameter Adaptive Method for State of Charge Estimation of Lithium-Ion Batteries With an Improved Extended Kalman Filter
,”
Sci. Rep.
,
11
(
1
), pp.
1
15
.
42.
Beelen
,
H.
,
Bergveld
,
H. J.
, and
Donkers
,
M. C. F.
,
2021
, “
Joint Estimation of Battery Parameters and State of Charge Using an Extended Kalman Filter: A Single-Parameter Tuning Approach
,”
IEEE Trans. Control Syst. Technol.
,
29
(
3
), pp.
1087
1101
.
43.
Zhao
,
Y.
,
Xu
,
J.
,
Wang
,
X.
, and
Mei
,
X.
,
2018
, “
The Adaptive Fading Extended Kalman Filter SOC Estimation Method for Lithium-Ion Batteries
,”
Energy Procedia
,
145
, pp.
357
362
.
You do not currently have access to this content.