Pressurized high temperature fuel cells and gas turbine integrated power systems are receiving growing attention as capable of reaching very high electrical conversion efficiency even in small size power plants. In this system the fuel and the oxidant (air) enter the cell after being compressed. The fuel oxidation reaction occurs predominantly within the fuel cell. The reaction is completed in a combustion chamber and the pressurized combustion products are exhausted through a turbine. The dynamic interdependences related to the integration of the fuel cell and the gas turbine are not completely understood and unexpected complications and dangers might arise. In fact as a consequence of both the relatively large volume of the pressurized portion of the plant and the shape of the stalled characteristic of available compressors, the plant could be affected by the inception of fluid-dynamic instabilities. In particular, surge could be detected in the transient off-design operational conditions occurring during plant regulation, start up and shut down. The paper presents a new experimental fuel cell gas turbine simulation facility that has been constructed at the Mechanical Engineering Department of the University of Trieste, Italy. The facility was designed to examine the effects of transient events on the dynamics of these systems. The theoretical analysis of the plant is completed using a dynamic model of the system purposely developed.

1.
Appleby
,
A. J.
, and
Foulkes
,
F. R.
, 1989,
Fuel Cell Handbook
,
Van Nostrand Reinhold
, New York.
2.
Massardo
,
A. F.
,
McDonald
,
C. F.
, and
Korakianitis
,
T.
, 2000, “
Microturbine/Fuel Cell Coupling for High-Efficiency Electrical-Power Generation
,” ASME Paper No. 2000-GT-175.
3.
Lubelli
,
F.
, and
Massardo
,
A. F.
, 1998, “
Internal Reforming Solide Oxide Fuel Cell–Gas Turbine Combined Cycles (IRSOFC-GT). Part A: Cell Model and Cycle Thermodynamic Analysis
,” ASME Paper No. 98-GT-577.
4.
Campanari
,
S.
,
Consonni
,
S.
,
Lozza
,
G.
, and
Macchi
,
E.
, 1998,
Libro bianco sulla cogenerazione, Volume IV: La microcogenerazione: le tecnologie del futuro
,
Associazione Termotecnica Italiana del Gas
, Milano, Italy.
5.
Costamagna
,
P.
,
Massardo
,
A.
, and
Bedont
,
P.
, 2000, “
Techno-Economical Analysis of SOFC Reactor-Gas Turbine Combined Plants
,”
Proc. of The Fourth European Solide Oxide Fuel Cell Forum
, Lucerne, Switzerland, pp.
383
392
.
6.
Vora
,
S. D.
, 2000, “
Southern California Edison (SCE) 200kWe Pressurized SOFC Power System
,”
Proc. of The Fourth European Solide Oxide Fuel Cell Forum
, Lucerne, Switzerland, pp.
175
182
.
7.
Veyo
,
S. E.
,
Shockling
,
L. A.
,
Dederer
,
J. T.
,
Gillet
,
J. E.
, and
Lundberg
,
W. L.
, 2000, “
Tubular Solide Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power System—Status
,” ASME Paper No. 2000-GT-550.
8.
De Simon
,
G.
,
Parodi
,
F.
,
Fermeglia
,
M.
, and
Taccani
,
R.
, 2003, “
Simulation of Process for Electrical Energy Production Based on Molten Carbonate Fuel Cells
,”
J. Power Sources
0378-7753,
115
, pp.
210
218
.
9.
Taccani
,
R.
, 2001, “Modellizzazione di cicli ibridi ad alta temperatura ad alta efficienza basati su celle a combustibile ad alta temperatura e microturbine,” X convegno Tecnologie e sistemi energetici complessi “S. Stecco,” Genova, giugno, pp.
265
274
.
10.
Tucker
,
D.
,
Liese
,
E.
,
VanOsdol
,
J.
,
Lawson
,
L.
, and
Gemmen
,
R.
, 2002, “
Fuel Cell Gas Turbine Facility Hybrid Simulation Facility Design
,”
Proceedings of IMECE 2002, ASME Congress and Exposition
, Nov. 17–22, New Orleans, Louisiana.
11.
Tucker
,
D.
,
Lawson
,
L.
, and
Gemmen
,
R.
, 2003, “
Preliminary Results of a Cold Flow Test in a Fuel Cell Gas Turbine Hybrid Simulation Facility
,”
Proceedings of ASME Turbo Expo 2003
, Power for Land, Sea, and Air, June 16–19, Atlanta, Georgia.
12.
Hildebrandt
,
A.
,
Genrup
,
M.
, and
Assadi
,
M.
, 2004, “
Steady-state and Transient Compressor Behavior Within a SOFC-GT-Hybrid System
,”
Proceedings of ASME Turbo Expo 2004
, Power for Land, Sea, and Air, June 14–17, Vienna, Austria.
13.
Liese
,
E.
, and
Gemmen
,
R.
, 2002, “
Dynamic Modeling Results of a 1MW Molten Carbonate Fuel Cell/Gas Turbine Power System
,”
Proceedings of ASME Turbo Expo 2002
, June 3–6, Amsterdam, The Netherlands.
14.
Theotokatos
,
G.
, and
Kyrtatos
,
N. P.
, 2001, “
Diesel Engine Transient Operation With Turbocharger Compressor Surging
,” SAE Paper No. 2001-01-1241.
15.
Greitzer
,
E. M.
, 1976, “
Surge ad Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
0022-0825,
98
, pp.
190
198
.
16.
Arnulfi
,
G. L.
,
Giannattasio
,
P.
,
Giusto
,
C.
,
Massardo
,
A. F.
,
Micheli
,
D.
, and
Pinamonti
,
P.
, 1999, “
Multistage Centrifugal Compressor Surge Analysis—Part II: Numerical Simulation and Dynamic Control Parameters Evaluation
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
312
320
.
17.
Fink
,
D. A.
,
Cumpsty
,
N. A.
, and
Greitzer
,
E. M.
, 1992, “
Surge Dynamics in a Free-Spool Centrifugal Compressor System
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
321
332
.
You do not currently have access to this content.