Targets in the development of anode-supported or planar solid oxide fuel cells (SOFCs) are low operation temperatures, high durability, high reliability, high power density, and low production costs. During the past ten years steps have already been taken at Forschungszentrum Jülich to lower the operating temperatures while maintaining the power output. This was achieved by optimizing processing and microstructural parameters of the electrodes. This paper presents the latest results concerning performance improvement through variations of the processing route and the microstructure of La0.65Sr0.3MnO3 (LSM) and La0.58Sr0.4Co0.2Fe0.8O3δ (LSCF)-type SOFCs. In the case of the LSM-type single cells, the following aspects relating to the electrochemical performance were investigated in more detail: (1) production of the anode substrate by tape casting versus warm pressing; (2) deposition of the anode functional layer (AFL) and electrolyte by screen printing versus vacuum slip casting; (3) use of noncalcined and non-ground YSZ for applying the cathode functional layer (CFL); and (4) sintering temperature of the CFL and cathode current collector layer (CCCL). In the case of LSCF-type cells, a systematic approach was initiated for optimizing the Ce0.8Gd0.2O2δ (CGO) diffusion barrier layer: (1) deposition techniques of the CGO layer and (2) sintering temperature of the screen-printed CGO layer. Results have shown that certain modifications of the processing route led to a slightly lower electrochemical performance, whereas others did not affect the performance at all. Regarding LSCF-type SOFCs, a slight improvement of the performance was achieved by optimizing the sintering temperature of the CGO layer.

1.
Pross
,
E.
,
Laube
,
J.
,
Weber
,
A.
,
Müller
,
A. C.
, and
Ivers-Tiffée
,
E.
, 2003 “
Low Cost (La,Sr)MnO3 Cathode Material with Excellent Electrochemical Properties
Proc. Solid Oxide Fuel Cells VIII
,
S. C.
Singhal
and
M.
Dokiya
, eds., Paris, France, April 27–May 3, 2003,
The Electrochemical Society
, Pennington, NJ, pp.
391
399
.
2.
Murray
,
E. P.
, and
Tsai
,
T.
, 1998, “
Oxygen Transfer Processes in (La,Sr)MnO3∕Y2O3-Stabilized ZrO2 Cathodes: An Impedance Spectroscopy Study
,”
Solid State Ionics
0167-2738,
110
, pp.
235
243
.
3.
Morgensen
,
M. J.
,
Primdahl
,
S.
, and
Mogensen
,
M.
, 1999, “
Characterisation of Composite SOFC Cathodes using Electrochemical Impedance Spectroscopy
,”
Electrochim. Acta
0013-4686,
44
, pp.
4195
4201
.
4.
Ostergard
,
M. J. L.
,
Clausen
,
C.
,
Bagger
,
C.
, and
Mogensen
,
M.
, 1995, “
Manganite-Zirconia Composite Cathodes for SOFC: Influence of Structure and Composition
,”
Electrochim. Acta
0013-4686,
40
, pp.
1971
1981
.
5.
Juhl
,
M.
,
Primdahl
,
S.
,
Manon
,
C.
, and
Mogensen
,
M.
, 1996, “
Performance/Structure Correlation for Composite SOFC Cathodes
,”
J. Power Sources
0378-7753,
61
, pp.
173
181
.
6.
Rietveld
,
B.
,
Nammensma
,
P.
,
Ouweltjes
,
J. P.
, and
Druten
,
v. G.
, 2002, “
Solid Oxide Fuel Cell Development at ECN and Production at INDEC
,”
Proc. Fuel Cell Seminar Fuel Cell: Fuel Cells-Reliable, Clean Energy for the World
, Palm Springs, CA, November 18-November 21, 2002,
Courtesy Associates
, Washington, DC, pp.
886
889
.
7.
Haanappel
,
V. A. C.
,
Mertens
,
J.
,
Rutenbeck
,
D.
,
Tropartz
,
C.
,
Herzhof
,
W.
,
Sebold
,
D.
, and
Tietz
,
F.
, 2005, “
Optimisation of Processing and Microstructural Parameters of LSM Cathodes to Improve the Electrochemical Performance of Anode-Supported SOFCs
,”
J. Power Sources
0378-7753,
141
, pp.
216
226
.
8.
Buchkremer
,
H. P.
,
Dieckmann
,
U.
, and
Stöver
,
D.
, 1996, “
Component Manufacturing and Stack Integration of Anode-Supported Planar SOFC System
,”
Proc. 2nd European Solid Oxide Fuel Cell Forum
,
B.
Thorstensen
, ed., Oslo, Norway, May 6-May 10, 1996,
Eur. SOFC Forum
, Oberrohrdorf, Switzerland, pp.
221
228
.
9.
Kenjo
,
T.
, and
Nishiya
,
M.
, 1992, “
LaMnO3 Air Cathodes Containing ZrO2 Electrolyte for High Temperature Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
57
, pp.
295
302
.
10.
Tsai
,
T.
, and
Barnett
,
S. A.
, 1997, “
Effect of LSM-YSZ Cathode on Thin-Electrolyte Solid Oxide Fuel Cell Performance
,”
Solid State Ionics
0167-2738,
93
, pp.
207
217
.
11.
Hart
,
N. T.
,
Brandon
,
N. P.
,
Day
,
M. J.
, and
Lapena-Rey
,
N.
, 2002, “
Functionally Graded Composite Cathodes for Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
106
, pp.
42
50
.
12.
Hart
,
N. T.
,
Brandon
,
N. P.
,
Day
,
M. J.
, and
Shemilt
,
J. E.
, 2001, “
Functionally Graded Cathodes for Solid Oxide Fuel Cells
,”
J. Mater. Sci.
0022-2461,
36
, pp.
1077
1085
.
13.
Akikusa
,
J.
,
Adachi
,
K.
,
Hoshino
,
K.
,
Ishihara
,
T.
, and
Takita
,
Y.
, 2001, “
Development of a Low Temperature Operation Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
148
(
11
), pp.
A1275
A1278
.
14.
Lee
,
Y. K.
,
Kim
,
J. Y.
,
Lee
,
Y. K.
,
Kim
,
I.
,
Moon
,
H. S.
,
Park
,
J. W.
,
Jacobson
,
C. P.
, and
Visco
,
S. J.
, 2003, “
Conditioning Effects of La1−xSrxMnO3-Yttria Stabilized Zirconia Electrodes for Thin-Film Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
115
, pp.
219
228
.
15.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Uhlenbruck
,
S.
,
Tietz
,
F.
, and
Stöver
,
D.
, 2005, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells. Part 1: Variations of Compositions
,”
Solid State Ionics
0167-2738,
176
, pp.
1341
1350
.
16.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Tietz
,
F.
, and
Stöver
,
D.
, 2005, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells. Part 2: Influence of the CGO Interlayer
,” to be published in the
Proceedings of the SSI-15 conference
Baden-Baden
, Germany, July
15
22
.
17.
Huijsmans
,
J. P. P.
,
Berkel van
,
F. P. F.
, and
Christie
,
G. M.
, 1998, “
Intermediate Temperature SOFC—A Promise for the 21st Century
,”
J. Power Sources
0378-7753,
71
, pp.
107
110
.
18.
Yan
,
J. W.
,
Lu
,
Y. G.
,
Jiang
,
Y.
,
Dong
,
Y. L.
,
Yu
,
C. U.
, and
Li
,
W. Z.
, 2002, “
Fabrication and Testing of a Doped Lanthanum Gallate Electrolyte Thin-Film Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
149
(
9
), pp.
A1132
A1135
.
19.
Erning
,
J. W.
,
Hauber
,
T.
,
Stimming
,
U.
, and
Wipperman
,
K.
, 1996, “
Catalysis of the Electrochemical Processes on Solid Oxide Fuel Cell Cathodes
,”
J. Power Sources
0378-7753,
61
, pp.
205
211
.
20.
Haart de
,
L. G. J.
,
Mayer
,
K.
,
Stimming
,
U.
, and
Vinke
,
I. C.
, 1998, “
Operation of Anode-Supported Thin Electrolyte Film Solid Oxide Fuel Cells at 800°C and Below
,”
J. Power Sources
0378-7753,
71
, pp.
302
305
.
21.
Kontouros
,
P.
,
Förthmann
,
R.
,
Naoumidis
,
A.
,
Stochiniol
,
G.
, and
Syskakis
,
E.
, 1995, “
Synthesis, Forming and Characterization of Ceramic Materials for the Planar Solid Oxide Fuel Cell (SOFC)
,”
Ionics
0947-7047,
1
, pp.
40
50
.
22.
Mertens
,
J.
,
Haanappel
,
V. A. C.
,
Wedershoven
,
C.
, and
Buchkremer
,
H. P.
, 2006, “
Sintering Behaviour of (La,Sr)MnO3-Type Cathodes for Planar Anode-Supported SOFCs
,”
, in press.
23.
Mai
,
A.
,
Becker
,
M.
,
Assenmacher
,
W.
,
Tietz
,
F.
,
Ivers-Tiffée
,
E.
,
Stöver
,
D.
, and
Mader
,
W
., 2005, “
Time-Dependent Performance of Mixed-Conducting SOFC Cathodes
,” to be published in the
Proceedings of the SSI-15 Conference
,
Baden-Baden
, Germany, July
15
22
.
You do not currently have access to this content.