Direct alcohol fuel cells (DAFCs) have been attracting more and more attention and interest during the last decade due to their simplicity, the easy handle and the high power density of the liquid alcohol fuels. However, along with DAFCs’ development several problems related to their performance optimizations have arisen that are well established and researches are already in progress for their solutions. These problems are responsible for the short lifetime and low cell performance and can be summarized as follows: (a) low alcohol electro-oxidation kinetics, (b) alcohol crossover, and (c) electrode delamination. This article briefly reviews DAFCs’ state of the art, the pertinent work done for the localization and quantification of the above-mentioned problems and the work aiming at the identification and use of novel materials which could catalyze the rate-determining step for the DAFCs’ development and further commercialization. Furthermore, taking into account that fuel choice is still a disputed issue, the alcohols suitable as potential fuels for DAFCs are also summarized and compared.

1.
Ishihara
,
A.
,
Mitsushima
,
S.
,
Kamiya
,
N.
, and
Ota
,
K.
, 2004, “
Exergy Analysis of Polymer Electrolyte Fuel Cell Systems Using Methanol
,”
J. Power Sources
0378-7753,
126
(
1-2
), pp.
34
40
.
2.
Lamy
,
C.
,
Belgsir
,
E.
, and
Legér
,
J.
, 2001, “
Electrocatalytic Oxidation of Aliphatic Alcohols: Application to the Direct Alcohol Fuel Cell (DAFC)
,”
J. Appl. Electrochem.
0021-891X,
31
(
7
), pp.
799
809
.
3.
Lamy
,
C.
,
Lima
,
A.
,
Lerhun
,
V.
,
Delime
,
F.
,
Coutanceau
,
C.
, and
Léger
,
J. M.
, 2002, “
Recent Advances in the Development of Direct Alcohol Fuel Cells (DAFC)
,”
J. Power Sources
0378-7753,
105
(
2
), pp.
283
296
.
4.
Wasmus
,
S.
, and
Küver
,
A.
, 1999, “
Methanol Oxidation and Direct Methanol Fuel Cells: A Selective Review
,”
J. Electroanal. Chem.
0022-0728,
461
(
1-2
), pp.
14
31
.
5.
Aricó
,
A.
,
Srinivasan
,
S.
, and
Antonucci
,
V.
, 2001, “
DMFCs: From Fundamental Aspects to Technology Development
,”
Fuel Cells
1615-6846,
1
(
2
), pp.
133
161
.
6.
Dillon
,
R.
,
Srinivasan
,
S.
,
Aricó
,
A. S.
, and
Antonucci
,
V.
, 2004, “
International Activities in DMFC R&D: Status of Technologies and Potential Applications
,”
J. Power Sources
0378-7753,
127
(
1-2
), pp.
112
126
.
7.
Song
,
S.
, and
Tsiakaras
,
P.
, 2005, “
Recent Progress in Direct Ethanol Proton Exchange Membrane Fuel Cells (DE-PEMFCs)
,”
Appl. Catal., B
0926-3373,
63
(
3-4
), pp.
187
193
.
8.
Song
,
S. Q.
,
Douvartzides
,
S.
, and
Tsiakaras
,
P.
, 2005, “
Exergy Analysis of an Ethanol Fuelled Proton Exchange Membrane (PEM) Fuel Cell System for Automobile Applications
,”
J. Power Sources
0378-7753,
145
(
2
), pp.
502
514
.
9.
Song
,
S.
,
Zhou
,
W.
,
Liang
,
Z.
,
Cai
,
R.
,
Sun
,
G.
,
Xin
,
Q.
,
Stergiopoulos
,
V.
, and
Tsiakaras
,
P.
, 2005, “
The Effect of Methanol and Ethanol Cross-over on the Performance of PtRu∕C-based Anode DAFCs
,”
Appl. Catal., B
0926-3373,
55
(
1
), pp.
65
72
.
10.
Song
,
S. Q.
,
Zhou
,
W. J.
,
Li
,
W. Z.
,
Sun
,
G.
,
Xin
,
Q.
,
Kontou
,
S.
, and
Tsiakaras
,
P.
, 2004, “
Direct Methanol Fuel Cells: Methanol Crossover and Its Influence on Single DMFC Performance
,”
Ionics
0947-7047,
10
(
5-6
), pp.
458
462
.
11.
Zhou
,
W. J.
,
Zhou
,
B.
,
Li
,
W. Z.
,
Zhou
,
Z. H.
,
Song
,
S. Q.
,
Sun
,
G. Q.
,
Xin
,
Q.
,
Douvartzides
,
S.
,
Goula
,
M.
, and
Tsiakaras
,
P.
, 2004, “
Performance Comparison of Low-Temperature Direct Alcohol Fuel Cells With Different Anode Catalysts
,”
J. Power Sources
0378-7753,
126
(
1-2
), pp.
16
22
.
12.
Song
,
S. Q.
,
Zhou
,
W. J.
,
Zhou
,
Z. H.
,
Jiang
,
L. H.
,
Sun
,
G. Q.
,
Xin
,
Q.
,
Leontidis
,
V.
,
Kontou
,
S.
, and
Tsiakaras
,
P.
, 2005, “
Direct Ethanol PEM Fuel Cells: The Case of Platinum Based Anodes
,”
Int. J. Hydrogen Energy
0360-3199,
30
(
9
), pp.
995
1001
.
13.
Zhou
,
W. J.
,
Zhou
,
Z. H.
,
Song
,
S. Q.
,
Li
,
W. Z.
,
Sun
,
G. Q.
,
Tsiakaras
,
P.
, and
Xin
,
Q.
, 2003, “
Pt Based Anode Catalysts for Direct Ethanol Fuel Cells
,”
Appl. Catal., B
0926-3373,
46
(
2
), pp.
273
285
.
14.
Thomas
,
S.
, and
Zalbowitz
,
M.
,
Fuel Cells-Green Power
,
Los Alamos National Laboratory
,
New Mexico
.
15.
Liguras
,
D.
,
Goundani
,
K.
, and
Verykios
,
X.
, 2004, “
Production of Hydrogen for Fuel Cells by Catalytic Partial Oxidation of Ethanol over Structured Ru catalysts
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
4
), pp.
419
427
.
16.
Douvartzides
,
S.
,
Coutelieris
,
F.
,
Demin
,
A.
, and
Tsiakaras
,
P.
, 2004, “
Electricity from Ethanol Fed SOFCs: The Expectations for Sustainable Development and Technological Benefits
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
4
), pp.
375
379
.
17.
Borroni-Bird
,
C. E.
, 1996, “
Fuel Cell Commercialization Issues for Light-duty Vehicle Applications
,”
J. Power Sources
0378-7753,
61
(
1-2
), pp.
33
48
.
18.
Song
,
S.
, 2004, “
Direct Ethanol Fuel Cells: Studies on Ethanol Crossover and MEA Preparation and Their Influence on Single DEFC’s Performance
,” Ph.D. thesis, Dalian Institute of Chemical Physics, CAS, China.
19.
Wang
,
J.
,
Wasmus
,
S.
, and
Savinell
,
R.
, 1995, “
Evaluation of Ethanol, 1-Propanol, and 2-Propanol in a Direct Oxidation Polymer-Electrolyte Fuel Cell-A Real-Time Mass Spectrometry Study
,”
J. Electrochem. Soc.
0013-4651,
142
(
12
), pp.
4218
4224
.
20.
Qi
,
Z.
, and
Kaufman
,
A.
, 2002, “
Performance of 2-Propanol in Direct-Oxidation Fuel Cells
,”
J. Power Sources
0378-7753,
112
(
1
), pp.
121
129
.
21.
Cao
,
D.
, and
Bergens
,
S.
, 2003, “
A Direct 2-Propanol Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
124
(
1
), pp.
12
17
.
22.
Peled
,
E.
,
Livshits
,
V.
, and
Duvdevani
,
T.
, 2002, “
High-Power Direct Ethylene Glycol Fuel Cell (DEGFC) Based on Nanoporous Proton-Conducting Membrane (NP-PCM)
,”
J. Power Sources
0378-7753,
106
(
1-2
), pp.
245
248
.
23.
Qi
,
Z.
, and
Kaufman
,
A.
, 2003, “
Liquid-Feed Direct Oxidation Fuel Cells Using Neat 2-Propanol as Fuel
,”
J. Power Sources
0378-7753,
118
(
1-2
), pp.
54
60
.
24.
Watanabe
,
M.
,
Uchida
,
M.
, and
Motoo
,
S.
, 1987, “
Preparation of Highly Dispersed Pt+Ru Alloy Clusters and the Activity for the Electrooxidation of Methanol
,”
J. Electroanal. Chem. Interfacial Electrochem.
0022-0728,
229
(
1-2
), pp.
395
406
.
25.
Wang
,
S.
,
Sun
,
G.
,
Wang
,
G.
,
Zhou
,
Z.
,
Zhao
,
X.
,
Sun
,
H.
,
Fan
,
X.
,
Yi
,
B.
, and
Xin
,
Q.
, 2005, “
Improvement of Direct Methanol Fuel Cell Performance by Modifying Catalyst Coated Membrane Structure
,”
Electrochem. Commun.
1388-2481,
7
(
10
), pp.
1007
1012
.
26.
Arico
,
A. S.
,
Cretì
,
P.
,
Antonucci
,
P. L.
, and
Antonucci
,
V.
, 1998, “
Comparison of Ethanol and Methanol Oxidation in a Liquid-feed Solid Polymer Electrolyte Fuel Cell at High Temperature
,”
Electrochem. Solid-State Lett.
1099-0062,
1
(
2
), pp.
66
68
.
27.
Zhou
,
W. J.
,
Song
,
S. Q.
,
Li
,
W. Z.
,
Zhou
,
Z. H.
,
Sun
,
G. Q.
,
Xin
,
Q.
,
Douvartzides
,
S.
, and
Tsiakaras
,
P.
, 2005, “
Direct Ethanol Fuel Cells Based on PtSn Anodes: the Effect of Sn Content on the Fuel Cell Performance
,”
J. Power Sources
0378-7753,
140
(
1
), pp.
50
58
.
28.
Jiang
,
L.
,
Sun
,
G.
,
Sun
,
S.
,
Liu
,
J.
,
Tang
,
S.
,
Li
,
H.
,
Zhou
,
B.
, and
Xin
,
Q.
, 2005, “
Structure and Chemical Composition of Supported Pt–Sn Electrocatalysts for Ethanol Oxidation
,”
Electrochim. Acta
0013-4686,
50
(
27
), pp.
5384
5389
.
29.
Song
,
S.
,
Wang
,
G.
,
Zhou
,
W.
,
Zhao
,
X.
,
Sun
,
G.
,
Xin
,
Q.
,
Kontou
,
S.
, and
Tsiakaras
,
P.
, 2005, “
The Effect of the MEA Preparation Procedure on both Ethanol Crossover and DEFC Performance
,”
J. Power Sources
0378-7753,
140
(
1
), pp.
103
110
.
30.
Surampudi
,
S.
,
Narayanan
,
S.
,
Vamos
,
E.
,
Frank
,
H.
,
Olah
,
G.
, and
Surya Prakash
,
G.
, 1993, “
Aqueous Liquid Organic Fuel Cell Using Solid Polymer Electrolyte Membrane
,” U.S. Patent No. 5,599,638.
31.
Chun
,
W.
,
Narayanan
,
S.
,
Valdez
,
T.
, and
Linke
,
J.
, 1999, “
Direct Deposit of Catalyst on the Membrane of Direct Feed Fuel Cells
,” U.S. Patent No. 6,277,447.
32.
Kindler
,
A.
, 1998, “
Direct Methanol Feed Fuel Cell with Reduced Catalyst Loading
,” U.S. Patent No. 5,992,008.
33.
Wei
,
Z.
,
Wang
,
S.
,
Yi
,
B.
,
Liu
,
J.
,
Chen
,
L.
,
Zhou
,
W.
,
Li
,
W.
, and
Xin
,
Q.
, 2002, “
Influence of Electrode Structure on the Performance of a Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
106
(
1-2
), pp.
364
369
.
34.
Xie
,
F.
,
Tian
,
Z.
,
Meng
,
H.
, and
Shen
,
P.
, 2005, “
Increasing the Three-Phase Boundary by a Novel Three-dimensional Electrode
,”
J. Power Sources
0378-7753,
141
(
2
), pp.
211
215
.
35.
Kim
,
J.
,
Ha
,
H.
,
Oh
,
I.
,
Hong
,
S.
, and
Lee
,
H.
, 2004, “
Influence of the Solvent in Anode Catalyst Ink on the Performance of a Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
135
(
1-2
), pp.
29
35
.
36.
Ren
,
X.
,
Wilson
,
M.
, and
Gottesfeld
,
S.
, 1996, “
High Performance Direct Methanol Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
143
(
1
), pp.
L12
L15
.
37.
Song
,
S.
,
Liang
,
Z.
,
Zhou
,
W.
,
Sun
,
G.
,
Xin
,
Q.
,
Stergiopoulos
,
V.
, and
Tsiakaras
,
P.
, 2005, “
Direct Methanol Fuel Cells: the Effect of Electrode Fabrication Procedure on MEAs Structural Properties and Cell Performance
,”
J. Power Sources
0378-7753,
145
(
2
), pp.
495
501
.
38.
Liu
,
J.
,
Jeon
,
M.
,
Choi
,
W.
, and
Woo
,
S.
, 2004, “
Highly-Optimized Membrane Electrode Assembly for Direct Methanol Fuel Cell Prepared by Sedimentation Method
,”
J. Power Sources
0378-7753,
137
(
2
), pp.
222
227
.
39.
Schonert
,
M.
,
Jakoby
,
K.
,
Schlumbohm
,
C.
,
Glüsen
,
A.
,
Mergel
,
J.
, and
Stolten
,
D.
, 2004, “
Manufacture of Robust Catalyst Layers for the DMFC
,”
Fuel Cells
1615-6846,
4
(
3
), pp.
175
179
.
40.
Gülzow
,
E.
,
Kaz
,
T.
,
Reissner
,
R.
,
Sander
,
H.
,
Schilling
,
L.
, and
v. Bradke
,
M.
, 2002, “
Study of Membrane Electrode Assemblies for Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
105
(
2
), pp.
261
266
.
41.
Gülzow
,
E.
,
Reissner
,
R.
,
Weisshaar
,
S.
, and
Kaz
,
T.
, 2003, “
Progress in DMFC Development Using the Dry Spraying Preparation Technique
,”
Fuel Cells
1615-6846,
3
(
1-2
), pp.
48
51
.
42.
Lindermeir
,
A.
,
Rosenthal
,
G.
,
Kunz
,
U.
, and
Hoffmann
,
U.
, 2004, “
Improvement of MEAs for Direct-Methanol Fuel Cells by Tuned Layer Preparation and Coating Technology
,”
Fuel Cells
1615-6846,
4
(
1-2
), pp.
78
85
.
43.
Neergat
,
M.
, and
Shukla
,
A.
, 2002, “
Effect of Diffusion-layer Morphology on the Performance of Solid-Polymer-Electrolyte Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
104
(
2
), pp.
289
294
.
44.
Oedegaard
,
A.
,
Hebling
,
C.
,
Schmitz
,
A.
,
Møller-Holst
,
S.
, and
Tunold
,
R.
, 2004, “
Influence of Diffusion Layer Properties on Low Temperature DMFC
,”
J. Power Sources
0378-7753,
127
(
1-2
), pp.
187
196
.
45.
Park
,
K.
,
Kwon
,
B.
,
Choi
,
J.
,
Park
,
I.
,
Kim
,
Y.
, and
Sung
,
Y.
, 2002, “
New RuO2 and Carbon-RuO2 Composite Diffusion Layer for Use in Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
109
(
2
), pp.
439
445
.
46.
Uchida
,
H.
,
Mizuno
,
Y.
, and
Watanabe
,
M.
, 2000, “
Suppression of Methanol Crossover in Pt-dispersed Polymer Electrolyte Membrane for Direct Methanol Fuel Cells
,”
Chem. Lett.
0366-7022,
11
, pp.
1268
1269
.
47.
Liu
,
J.
,
Zhao
,
T.
,
Chen
,
R.
, and
Wong
,
C.
, 2005, “
The Effect of Methanol Concentration on the Performance of a Passive DMFC
,”
Electrochem. Commun.
1388-2481,
7
(
3
), pp.
288
294
.
48.
Heinzel
,
A.
, and
Barragán
,
V.
, 1999, “
A Review of the State-of-the-art of the Methanol Crossover in Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
84
(
1
), pp.
70
74
.
49.
Hobson
,
L.
,
Ozu
,
H.
,
Yamaguchi
,
M.
, and
Hayase
,
S.
, 2001, “
Modified Nafion 117 as an Improved Polymer Electrolyte Membrane for Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
148
(
10
), pp.
A1185
A1190
.
50.
Choi
,
W.
,
Kim
,
J.
, and
Woo
,
S.
, 2001, “
Modification of Proton Conducting Membrane for Reducing Methanol Crossover in a Direct-Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
96
(
2
), pp.
411
414
.
51.
Uchida
,
H.
,
Mizuno
,
Y.
, and
Watanabe
,
M.
, 2002, “
Suppression of Methanol Crossover and Distribution of Ohmic Resistance in Pt-dispersed PEMs under DMFC Operation: Experimental Analyses
,”
J. Electrochem. Soc.
0013-4651,
149
(
6
), pp.
A682
A687
.
52.
Kim
,
Y.
,
Park
,
K.
,
Choi
,
J.
,
Park
,
I.
, and
Sung
,
Y.
, 2003, “
A Pd-Impregnated Nanocomposite Nafion Membrane for Use in High-Concentration Methanol Fuel in DMFC
,”
Electrochem. Commun.
1388-2481,
5
(
7
), pp.
571
574
.
53.
Jia
,
N.
,
Lefebvre
,
M.
,
Halfyard
,
J.
,
Qi
,
Z.
, and
Pickup
,
P.
, 2000, “
Modification of Nafion Proton Exchange Membranes to Reduce Methanol Crossover in PEM Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
3
(
12
), pp.
529
531
.
54.
Feichtinger
,
J.
,
Galm
,
R.
,
Walker
,
M.
,
Baumgärtner
,
K.
,
Schulz
,
A.
,
Räuchle
,
E.
, and
Schumacher
,
U.
, 2001, “
Plasma Polymerized Barrier Films on Membranes for Direct Methanol Fuel Cells
,”
Surf. Coat. Technol.
0257-8972,
142
, pp.
181
186
.
55.
Tricoli
,
V.
, 1998, “
Proton and Methanol Transport in Poly (Perfluorosulfonate) Membranes Containing Cs+ and H+ Cations
,”
J. Electrochem. Soc.
0013-4651,
145
(
11
), pp.
3798
3801
.
56.
Gojković
,
L.
,
Gupta
,
S.
, and
Savinell
,
R.
, 1999, “
Heat-Treated Iron (III) Tetramethoxyphenyl Porphyrin Chloride Supported on High-Area Carbon as an Electrocatalyst for Oxygen Reduction: Part II. Kinetics of Oxygen Reduction
,”
J. Electroanal. Chem.
0022-0728,
462
(
1
), pp.
63
72
.
57.
Wasmus
,
S.
,
Wang
,
J.
, and
Savinell
,
R.
, 1995, “
Real-Time Mass-Spectrometric Investigation of the Methanol Oxidation in a Direct Methanol Fuel-Cell
,”
J. Electrochem. Soc.
0013-4651,
142
(
11
), pp.
3825
3833
.
58.
Wainright
,
S.
,
Wang
,
J.
,
Weng
,
D.
,
Savinell
,
R.
, and
Litt
,
M.
, 1995, “
Acid-Doped Polybenzimidazoles-A New Polymer Electrolyte
,”
J. Electrochem. Soc.
0013-4651,
142
(
7
), pp.
L121
L123
.
59.
Weng
,
D.
,
Wainright
,
J.
,
Landau
,
U.
, and
Savinell
,
R.
, 1996, “
Electro-Osmotic Drag Coefficient of Water and Methanol in Polymer Electrolytes at Elevated Temperatures
,”
J. Electrochem. Soc.
0013-4651,
143
(
4
), pp.
1260
1263
.
60.
Ren
,
S.
,
Li
,
C.
,
Zhao
,
X.
,
Wu
,
Z.
,
Wang
,
S.
,
Sun
,
G.
,
Xin
,
Q.
, and
Yang
,
X.
, 2005, “
Surface Modification of Sulfonated Poly (Ether Ether Ketone) Membranes Using Nafion Solution for Direct Methanol Fuel Cells
,”
J. Membr. Sci.
0376-7388,
247
(
1-2
), pp.
59
63
.
61.
Kerres
,
J.
,
Cui
,
W.
,
Disson
,
R.
, and
Neubrand
,
W.
, 1998, “
Development and Characterization of Crosslinked Ionomer Membranes Based upon Sulfinated and Sulfonated PSU Crosslinked PSU Blend Membranes by Disproportionation of Sulfinic Acid Groups
,”
J. Membr. Sci.
0376-7388,
139
(
2
), pp.
211
225
.
62.
Nolte
,
R.
,
Ledjeff
,
K.
,
Bauer
,
M.
, and
Mülhaupt
,
R.
, 1993, “
Partially Sulfonated Poly (Arylene Ether Sulfone)—A Versatile Proton Conducting Membrane Material for Modern Energy Conversion Technologies
,”
J. Membr. Sci.
0376-7388,
83
(
2
), pp.
211
220
.
63.
Boysen
,
D.
,
Uda
,
T.
,
Chisholm
,
C.
, and
Haile
,
S.
, 2004, “
High Performance Solid Acid Fuel Cells through Humidity Stabilization
,”
Science
0036-8075,
303
(
5654
), pp.
68
70
.
64.
Samms
,
S.
,
Wasmus
,
S.
, and
Savinell
,
R.
, 1996, “
Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments
,”
J. Electrochem. Soc.
0013-4651,
143
(
4
), pp.
1225
1232
.
65.
Fischer
,
C.
,
Alonso-Vante
,
N.
,
Fiechter
,
S.
, and
Tributsch
,
H.
, 1995, “
Electrocatalytic Properties of Mixed Transition-Metal Tellurides (Chevrel-Phases) for Oxygen Reduction
,”
J. Appl. Electrochem.
0021-891X,
25
(
11
), pp.
1004
1008
.
66.
Barton
,
S.
,
Patterson
,
T.
,
Wang
,
E.
,
Fuller
,
T.
, and
West
,
A.
, 2001, “
Mixed-Reactant, Strip-Cell Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
96
(
2
), pp.
329
336
.
67.
Tang
,
H. L.
,
Pan
,
M.
,
Jiang
,
S. P.
, and
Yuan
,
R. Z.
, 2005, “
Modification of Nafion™ Membrane to Reduce Methanol Crossover via Self-Assembled Pd Nanoparticles
,”
Mater. Lett.
0167-577X,
59
(
28
), pp.
3766
3770
.
68.
Okamoto
,
K.
,
Yin
,
Y.
,
Yamada
,
O.
,
Islam
,
M. N.
,
Honda
,
T.
,
Mishima
,
T.
,
Suto
,
Y.
,
Tanaka
,
K.
, and
Kita
,
H.
, 2005, “
Methanol Permeability and Proton Conductivity of Sulfonated Co-polyimide Membranes
,”
J. Membr. Sci.
0376-7388,
258
(
1-2
), pp.
115
122
.
69.
Baglio
,
V.
,
Blasi
,
A. D.
,
Aricó
,
A. S.
,
Antonucci
,
V.
,
Antonucci
,
P. L.
,
Nannetti
,
F.
, and
Tricoli
,
V.
, 2005, “
Investigation of the Electrochemical Behavior in DMFCs of Chabazite and Clinoptilolite-Based Composite Membranes
,”
Electrochim. Acta
0013-4686,
50
(
25-26
), pp.
5181
5188
.
70.
Jones
,
D. J.
,
Rozière
,
J.
,
Marrony
,
M.
,
Lamy
,
C.
,
Coutanceau
,
C.
,
Léger
,
J. M.
,
Hutchinson
,
H.
, and
Dupont
,
M.
, 2005, “
High-temperature DMFC Stack Operating With Non-Fluorinated Membranes
,”
Fuel Cells Bull.
1464-2859,
2005
(
10
), pp.
12
15
.
71.
Affoune
,
A. M.
,
Yamada
,
A.
, and
Umeda
,
M.
, 2005, “
Conductivity and Surface Morphology of Nafion Membrane in Water and Alcohol Environments
,”
J. Power Sources
0378-7753,
148
, pp.
9
17
.
72.
Apanel
,
G.
, and
Johnson
,
E.
, 2004, “
Direct Methanol Fuel Cells—Ready to Go Commercial?
,”
Fuel Cells Bull.
1464-2859,
2004
(
11
), pp.
12
-
17
.
You do not currently have access to this content.