In the thin-film solid oxide fuel cell (SOFC) concept of the German Aerospace Center (DLR) in Stuttgart, the entire membrane electrode assembly (MEA) is deposited onto a porous metallic substrate by an integrated multistep vacuum plasma spray (VPS) process. This concept enables the production of very thin and stable electrodes and electrolyte layers with a total cell thickness of only 100120μm. In this concept, the porous ferrite substrate material predominantly acts as mechanical cell support and as fuel gas distributor. In general, ferrite substrate alloys with high chromium and low manganese content show both excellent corrosion stability and adequate thermal expansion behavior. Nevertheless, at the high process temperature in the SOFC of 800°C, atomic transport processes can show a detrimental effect on cell performance, at least at the required long-term operation. Problems arise, in particular, through diffusion processes of Fe-, Cr-, and Ni-species between the Ni/8YSZ anode and the ferrite steel-based substrate material. This can induce significant structure changes both in the anode and the substrate. As a reliable solution of this key problem, a plasma sprayed thin diffusion barrier layer is seen at the interface between anode and substrate, which consists of an electrically conductive and chemically stable ceramic component. For this purpose, some doped perovskite-type LaCrO3, such as La1xSrxCrO3δ, La1xCaxCrO3δ, or La1xSrxCr1yCoyO3δ were investigated and tested carefully at DLR. These types of perovskites show a high potential to fulfill all the required properties that are needed for the applicability as an anode-side diffusion barrier layer. The paper focuses on basic investigations of differently doped LaCrO3 compounds under SOFC-relevant conditions concerning thermal expansion, electrical conductivity, chemical stability, etc. Furthermore, first results of electrically and electrochemically characterized half cells carried out with some qualified doped LaCrO3 are shown. Finally, the diffusion barrier layer is demonstrated as a new SOFC component that is effective at cell operating conditions.

1.
Lamp
,
P.
,
Tachtler
,
J.
,
Finkenwirth
,
O.
,
Mukerjee
,
S.
, and
Shaffer
,
S.
, 2003, “
Development of an Auxiliary Power Unit With Solid Oxide Fuel Cells for Automotive Applications
,”
Fuel Cells
1615-6846,
3
(
3
), pp.
146
152
.
2.
Minh
,
N. Q.
, and
Takahashi
,
T.
, 1995,
Science and Technology of Ceramic Fuel Cells
,
Elsevier-Verlag
, Amsterdam.
3.
Henne
,
R.
, 1993,
Stand und aktuelle Entwicklungen bei Gleichstromplasmabrennern für das thermische Spritzen
, Schweißen und Schneiden, DVS Sonderdruck, Nr. 2/93, 45. Jahrgang,
DVS Verlag Düsseldorf
.
4.
Schiller
,
G.
,
Henne
,
R.
,
Lang
,
M.
,
Ruckdäschel
,
R.
, and
Schaper
,
S.
, 2000, “
Fabrication of Thin-Film SOFC by Plasma Spray Technique
,”
Proc. 4th European Fuel Cell Forum
, Vol.
1
,
A. J.
McEvoy
, ed., Lucerne, Switzerland, p.
37
.
5.
Herman
,
H.
, 1988,
Plasmagespritzte Beschichtungen, Spekt. Wiss.
,
11
, pp.
102
123
.
6.
Franco
,
T.
,
Henne
,
R.
,
Lang
,
M.
,
Schiller
,
G.
, and
Szabo
,
P.
, 2002, “
Novel Metallic Substrate Materials for Plasma Sprayed Thin-Film SOFCs
,”
Proc. 5th European SOFC Forum
,
J.
Huijsmans
, ed., Vol.
2
, Lucerne, Switzerland, pp.
647
654
.
7.
Franco
,
T.
,
Henne
,
R.
,
Lang
,
M.
,
Metzger
,
P.
,
Schiller
,
G.
,
Szabo
,
P.
, and
Ziehm
,
S.
, 2003, “
Metallic Components for a Plasma Sprayed Thin-Film SOFC Concept
,”
Proc. of Solid Oxide Fuel Cell VIII (SOFC VIII, Paris)
,
S. C.
Singhal
and
M.
Dokiya
, eds., Electrochemical Society, Pennington, NJ, Vol.
2003-07
, pp.
923
932
.
8.
Malkow
,
T.
,
Quaddakers
,
W. J.
,
Singheiser
,
L.
, and
Nickel
,
H.
, 1998, Berichte des Forschungszentrums Jülich, Nr. Jül-3589, Forschungszentrum Jülich GmbH, Zentralbibliothek, D-52425 Jülich, Germany.
9.
Brylewski
,
T.
,
Nanko
,
M.
,
Maruyama
,
T.
, and
Przybylski
,
K.
, 2001, “
Application of Fe‐16Cr Ferritic Alloy to Interconnector for a Solid Oxide Fuel Cell
,”
Solid State Ionics
0167-2738,
143
, pp.
131
150
.
10.
Franco
,
T.
, 2003, Validierung von CEA-Trägersubstraten für die oxidkeramische Hochtemperatur-Brennstoffzelle (SOFC) der BMW-APU, interne DLR- Berichte, Abschlussbericht.
11.
Franco
,
T.
, 2002, Untersuchung des Degradationsverhaltens des porösen metallischen Trägersubstrats und der Grenzschicht “Substratdeckschicht/Anode” für die oxidkeramische Brennstoffzelle (SOFC) der BMW-APU, interne DLR-Berichte.
12.
Kofstad
,
P.
, 1998,
High Temperature Corrosion
,
Elsevier
, New York.
13.
Ruckdäschel
,
R.
, and
Schiller
,
G.
, 2005, Verfahrens- und Schichtentwicklung von Komponenten für tubulare Hochtemperatur-Brennstoffzellen(SOFC), Abschlussbericht zum BMWA-Projekt.
14.
Gindorf
,
C.
, Untersuchungen zur Chromfreisetzung aus metallischen Interkonnektorwerkstoffen für die Hochtemperaturbrennstoffzelle (SOFC), Berichte des Forschungszentrums Jülich; 3853.
15.
Bausinger
,
H.
, 2000, “
Materialeigenschaften von dotierten Perowskiten des Typs LaCrO3
,” Dissertation, Eberhard-Karls-Universität Tübingen, Institut f. Mineralogie, Petrologie & Geochemie Shaker Verlag GmbH, Aachen.
16.
Schaper
,
S.
, 1998, “
Entwicklung und elektrochemische Charakterisierung von vakuumplasmagespritzten ZrO2‐Y2O3-Festelektrolyten für die Hochtemperaturbrennstoffzelle (SOFC)
,” Master-thesis, University of Siegen, DLR-Stuttgart.
17.
Bossel
,
U. G.
, 1992, “
Final Report on SOFC Data, Facts and Figures
,” IEA Programe of R&D on Advanced Fuel Cells, Bern, April.
18.
Anderson
,
H. U.
,
Nasrallah
,
M. M.
,
Flandermeyer
,
B. K.
, and
Argawal
,
A. K.
, 1985, “
High-Temperature Redox Behaviour of Doped SrTiO3 and LaCrO3
,”
J. Solid State Chem.
0022-4596,
56
(
3
), pp.
325
334
.
19.
Mizusaki
,
J.
,
Yamauchi
,
S.
,
Fueki
,
K.
, and
Ishikawa
,
A.
, 1984, “
Nonstoichiometry of the Perovskite-Type Oxide La1−xSrxCrO3
,”
Solid State Ionics
0167-2738,
12
, pp.
119
124
.
You do not currently have access to this content.