This study focuses on cathode performances of (Ln1xSrx)CoO3δ (Ln=Pr, Nd, Sm, and Gd, x=0, 0.3, 0.5, 0.7, and 1) for intermediate temperature-operating solid oxide fuel cells (IT-SOFCs, 600800°C). (Ln1xSrx)CoO3δ powders as cathode materials for IT-SOFC, which can be operated between 600°C and 800°C were synthesized by the glycine-nitrate-process (GNP) method. The impedance spectroscopy method was used to investigate area specific resistance (ASR) and electrochemical properties of (Ln1xSrx)CoO3δ (Ln=Pr, Nd, Sm, and Gd, x=0, 0.3, 0.5, 0.7, and 1). Pr0.5Sr0.5CoO3δ and Pr0.3Sr0.7CoO3δ showed to 0.15Ωcm2 of ASR at 700°C and Nd0.5Sr0.5CoO3δ to 0.14Ωcm2 at 700°C. Sm0.5Sr0.5CoO3δ showed the lowest ASR values of 0.10Ωcm2 on 10% Gd-doped cerium oxide at 700°C.

1.
Setoguchi
,
T.
,
Sawano
,
M.
,
Eguchi
,
K.
, and
Arai
,
H.
, 1990, “
Application of the Stabilized Zirconia Thin Film Prepared by Spray Pyrolysis Method to SOFC
,”
Solid State Ionics
,
40–41
, pp.
502
505
. 0167-2738
2.
Minh
,
N. Q.
, 1993, “
Ceramic Fuel Cells
,”
J. Am. Ceram. Soc.
0002-7820,
76
, pp.
563
588
.
3.
Schoonman
,
J.
,
Dekker
,
J. P.
,
Broers
,
J. W.
, and
Kiwiet
,
N. J.
, 1991, “
Electrochemical Vapor Deposition of Stabilized Zirconia and Interconnection Materials for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
46
, pp.
299
308
.
4.
van Dieten
,
V. E. J.
, and
Schoonman
,
J.
, 1992, “
Thin Film Techniques for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
57
, pp.
141
145
.
5.
Chen
,
C. C.
,
Nasrallah
,
M. M.
, and
Anderson
,
H. U.
, 1994, “
Synthesis and Characterization of YSZ Thin Film Electrolytes
,”
Solid State Ionics
,
70–71
, pp.
101
108
. 0167-2738
6.
Hibino
,
T.
,
Hashimoto
,
A.
,
Asano
,
K.
,
Yano
,
M.
,
Suzuki
,
M.
, and
Sano
,
M.
, 2002, “
An Intermediate-Temperature Solid Oxide Fuel Cell Providing Higher Performance With Hydrocarbons Than With Hydrogen
,”
Electrochem. Solid-State Lett.
1099-0062,
5
(
11
), pp.
A242
A244
.
7.
Shao
,
Z.
, and
Haile
,
S. M.
, 2004, “
A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells
,”
Nature (London)
0028-0836,
431
, pp.
170
173
.
8.
Steele
,
B. C. H.
, 1999, “
Fuel-Cell Technology Running on Natural Gas
,”
Nature (London)
0028-0836,
400
, pp.
619
621
.
9.
Kim
,
J. D.
,
Kim
,
G. D.
,
Moon
,
J. W.
,
Park
,
Y. I.
,
Lee
,
W. H.
,
Kobayashi
,
K.
,
Nagai
,
M.
, and
Kim
,
C. E.
, 2001, “
Characterization of LSM-YSZ Composite Electrode by ac Impedance Spectroscopy
,”
Solid State Ionics
0167-2738,
143
, pp.
379
389
.
10.
Yu
,
H. C.
, and
Fung
,
K. Z.
, 2004, “
Electrode Properties of La1−xSrxCuO2.5−δ as New Cathode Materials for Intermediate-Temperature SOFCs
,”
J. Power Sources
,
133
, pp.
162
168
. 0378-7753
11.
Singhal
,
S. C.
, 2000, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
0167-2738,
135
, pp.
305
313
.
12.
Juhl
,
M.
,
Primdahl
,
S.
,
Manon
,
C.
, and
Mogensen
,
M.
, 1996, “
Performance/Structure Correlation for Composite SOFC Cathodes
,”
J. Power Sources
0378-7753,
61
, pp.
173
181
.
13.
Murray
,
E. P.
, and
Barnett
,
S. A.
, 2001, “
(La,Sr)MnO3−(Ce,Gd)O2−xComposite Cathodes for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
143
, pp.
265
273
.
14.
Ohno
,
Y.
,
Nagata
,
S.
, and
Sato
,
H.
, 1981, “
Effect of Electrode Materials on the Properties of High-Temperature Solid Electrolyte Fuel Cells
,”
Solid State Ionics
0167-2738,
3–4
, pp.
439
442
.
15.
Rossignol
,
C.
,
Ralph
,
J. M.
,
Bae
,
J. -M.
, and
Vaughey
,
J. T.
, 2004, “
La1−xSrxCuO3 (Ln=Gd, Pr) as a Cathode for Intermediate-Temperature Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
175
, pp.
59
61
.
16.
Chick
,
L. A.
,
Pederson
,
L. R.
,
Maupin
,
G. D.
,
Bates
,
J. L.
,
Thomas
,
L. E.
, and
Exarhos
,
G. J.
, 1990, “
Glycine-Nitrate Combustion Synthesis of Oxide Ceramic Powders
,”
Mater. Lett.
0167-577X,
10
, pp.
6
12
.
17.
Shannon
,
R. D.
, 1976, “
Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides
,”
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
0567-7394,
32
, pp.
751
767
.
18.
Ohno
,
Y.
,
Nagata
,
S.
, and
Sato
,
H.
, 1983, “
Properties of Oxides for High Temperature Solid Electrolyte Fuel Cell
,”
Solid State Ionics
0167-2738,
9&10
, pp.
1001
1008
.
19.
Kostogloudis
,
G. Ch.
,
Vasilakos
,
N.
, and
Ftikos
,
Ch.
, 1998, “
Crystal Structure, Thermal and Electrical Properties of Pr1−xSrxCuO3−δ (x=50, 0.15, 0.3, 0.4, 0.5) Perovskite Oxides
,”
Solid State Ionics
0167-2738,
106
, pp.
207
218
.
20.
Wang
,
Z. L.
, and
Zhang
,
J.
, 1996, “
Tetragonal Domain Structure and Magnetoresistance of La1−xSrxCuO3
,”
Phys. Rev. B
0163-1829,
54
, pp.
1153
1158
.
21.
Torrance
,
J. B.
, and
Lacorre
,
P.
, 1991, “
Why are Some Oxides Metallic, While Most are Insulating?
,”
Physica C
0921-4534,
182
, pp.
351
364
.
22.
Sarma
,
D. D.
, and
Chainani
,
A.
, 1992, “
Electronic Structure of and the Metal-Insulator Transition in La1−xSrxCuO3−δ: A Soft-X-Ray Absorption Study
,”
Europhys. Lett.
0295-5075,
19
, pp.
513
520
.
23.
Arima
,
T.
,
Tokura
,
Y.
, and
Torrance
,
J. B.
, 1993, “
Variation of Optical Gaps in Perovskite-Type 3D Transition-Metal Oxides
,”
Phys. Rev. B
0163-1829,
48
, pp.
17006
17009
.
You do not currently have access to this content.