This study focuses on cathode performances of (, Nd, Sm, and Gd, , 0.3, 0.5, 0.7, and 1) for intermediate temperature-operating solid oxide fuel cells (IT-SOFCs, ). powders as cathode materials for IT-SOFC, which can be operated between and were synthesized by the glycine-nitrate-process (GNP) method. The impedance spectroscopy method was used to investigate area specific resistance (ASR) and electrochemical properties of (, Nd, Sm, and Gd, , 0.3, 0.5, 0.7, and 1). and showed to of ASR at and to at . showed the lowest ASR values of on 10% Gd-doped cerium oxide at .
1.
Setoguchi
, T.
, Sawano
, M.
, Eguchi
, K.
, and Arai
, H.
, 1990, “Application of the Stabilized Zirconia Thin Film Prepared by Spray Pyrolysis Method to SOFC
,” Solid State Ionics
, 40–41
, pp. 502
–505
. 0167-27382.
Minh
, N. Q.
, 1993, “Ceramic Fuel Cells
,” J. Am. Ceram. Soc.
0002-7820, 76
, pp. 563
–588
.3.
Schoonman
, J.
, Dekker
, J. P.
, Broers
, J. W.
, and Kiwiet
, N. J.
, 1991, “Electrochemical Vapor Deposition of Stabilized Zirconia and Interconnection Materials for Solid Oxide Fuel Cells
,” Solid State Ionics
0167-2738, 46
, pp. 299
–308
.4.
van Dieten
, V. E. J.
, and Schoonman
, J.
, 1992, “Thin Film Techniques for Solid Oxide Fuel Cells
,” Solid State Ionics
0167-2738, 57
, pp. 141
–145
.5.
Chen
, C. C.
, Nasrallah
, M. M.
, and Anderson
, H. U.
, 1994, “Synthesis and Characterization of YSZ Thin Film Electrolytes
,” Solid State Ionics
, 70–71
, pp. 101
–108
. 0167-27386.
Hibino
, T.
, Hashimoto
, A.
, Asano
, K.
, Yano
, M.
, Suzuki
, M.
, and Sano
, M.
, 2002, “An Intermediate-Temperature Solid Oxide Fuel Cell Providing Higher Performance With Hydrocarbons Than With Hydrogen
,” Electrochem. Solid-State Lett.
1099-0062, 5
(11
), pp. A242
–A244
.7.
Shao
, Z.
, and Haile
, S. M.
, 2004, “A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells
,” Nature (London)
0028-0836, 431
, pp. 170
–173
.8.
Steele
, B. C. H.
, 1999, “Fuel-Cell Technology Running on Natural Gas
,” Nature (London)
0028-0836, 400
, pp. 619
–621
.9.
Kim
, J. D.
, Kim
, G. D.
, Moon
, J. W.
, Park
, Y. I.
, Lee
, W. H.
, Kobayashi
, K.
, Nagai
, M.
, and Kim
, C. E.
, 2001, “Characterization of LSM-YSZ Composite Electrode by ac Impedance Spectroscopy
,” Solid State Ionics
0167-2738, 143
, pp. 379
–389
.10.
Yu
, H. C.
, and Fung
, K. Z.
, 2004, “Electrode Properties of La1−xSrxCuO2.5−δ as New Cathode Materials for Intermediate-Temperature SOFCs
,” J. Power Sources
, 133
, pp. 162
–168
. 0378-775311.
Singhal
, S. C.
, 2000, “Advances in Solid Oxide Fuel Cell Technology
,” Solid State Ionics
0167-2738, 135
, pp. 305
–313
.12.
Juhl
, M.
, Primdahl
, S.
, Manon
, C.
, and Mogensen
, M.
, 1996, “Performance/Structure Correlation for Composite SOFC Cathodes
,” J. Power Sources
0378-7753, 61
, pp. 173
–181
.13.
Murray
, E. P.
, and Barnett
, S. A.
, 2001, “(La,Sr)MnO3−(Ce,Gd)O2−xComposite Cathodes for Solid Oxide Fuel Cells
,” Solid State Ionics
0167-2738, 143
, pp. 265
–273
.14.
Ohno
, Y.
, Nagata
, S.
, and Sato
, H.
, 1981, “Effect of Electrode Materials on the Properties of High-Temperature Solid Electrolyte Fuel Cells
,” Solid State Ionics
0167-2738, 3–4
, pp. 439
–442
.15.
Rossignol
, C.
, Ralph
, J. M.
, Bae
, J. -M.
, and Vaughey
, J. T.
, 2004, “La1−xSrxCuO3 (Ln=Gd, Pr) as a Cathode for Intermediate-Temperature Solid Oxide Fuel Cells
,” Solid State Ionics
0167-2738, 175
, pp. 59
–61
.16.
Chick
, L. A.
, Pederson
, L. R.
, Maupin
, G. D.
, Bates
, J. L.
, Thomas
, L. E.
, and Exarhos
, G. J.
, 1990, “Glycine-Nitrate Combustion Synthesis of Oxide Ceramic Powders
,” Mater. Lett.
0167-577X, 10
, pp. 6
–12
.17.
Shannon
, R. D.
, 1976, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides
,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
0567-7394, 32
, pp. 751
–767
.18.
Ohno
, Y.
, Nagata
, S.
, and Sato
, H.
, 1983, “Properties of Oxides for High Temperature Solid Electrolyte Fuel Cell
,” Solid State Ionics
0167-2738, 9&10
, pp. 1001
–1008
.19.
Kostogloudis
, G. Ch.
, Vasilakos
, N.
, and Ftikos
, Ch.
, 1998, “Crystal Structure, Thermal and Electrical Properties of Pr1−xSrxCuO3−δ (x=50, 0.15, 0.3, 0.4, 0.5) Perovskite Oxides
,” Solid State Ionics
0167-2738, 106
, pp. 207
–218
.20.
Wang
, Z. L.
, and Zhang
, J.
, 1996, “Tetragonal Domain Structure and Magnetoresistance of La1−xSrxCuO3
,” Phys. Rev. B
0163-1829, 54
, pp. 1153
–1158
.21.
Torrance
, J. B.
, and Lacorre
, P.
, 1991, “Why are Some Oxides Metallic, While Most are Insulating?
,” Physica C
0921-4534, 182
, pp. 351
–364
.22.
Sarma
, D. D.
, and Chainani
, A.
, 1992, “Electronic Structure of and the Metal-Insulator Transition in La1−xSrxCuO3−δ: A Soft-X-Ray Absorption Study
,” Europhys. Lett.
0295-5075, 19
, pp. 513
–520
.23.
Arima
, T.
, Tokura
, Y.
, and Torrance
, J. B.
, 1993, “Variation of Optical Gaps in Perovskite-Type 3D Transition-Metal Oxides
,” Phys. Rev. B
0163-1829, 48
, pp. 17006
–17009
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.