A thermally self-sustaining miniature power generation device was developed utilizing a single-chamber solid oxide fuel cell (SOFC) placed in a controlled thermal environment provided by a spiral counterflow “Swiss roll” heat exchanger and combustor. With the single-chamber design, fuel/oxygen crossover due to cracking of seals via thermal cycling is irrelevant and coking on the anode is practically eliminated. Appropriate SOFC operating temperatures were maintained even at low Reynolds numbers (Re) via combustion of the fuel cell effluent at the center of the Swiss roll. Both propane and higher hydrocarbon fuels were examined. Extinction limits and thermal behavior of the integrated system were determined in equivalence ratio—Re parameter space and an optimal regime for SOFC operation were identified. SOFC power densities up to 420mW/cm2 were observed at low Re. These results suggest that single-chamber SOFCs integrated with heat-recirculating combustors may be a viable approach for small-scale power generation devices.

1.
Fernandez-Pello
,
A. C.
, 2002, “
Micropower Generation Using Combustion: Issues and Approaches
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
883
899
.
2.
Lloyd
,
S. A.
, and
Weinberg
,
F. J.
, 1974, “
A Burner for Mixtures of Very Low Heat Content
,”
Nature (London)
0028-0836,
251
, pp.
47
49
.
3.
Lloyd
,
S. A.
, and
Weinberg
,
F. J.
, 1975, “
Limits to Energy Release and Utilisation From Chemical Fuels
,”
Nature (London)
0028-0836,
257
, pp.
367
370
.
4.
Ormerod
,
R. M.
, 2003, “
Solid Oxide Fuel Cells
,”
Chem. Soc. Rev.
0306-0012,
32
, pp.
17
28
.
5.
Shao
,
Z. P.
,
Haile
,
S. M.
,
Ahn
,
J.
,
Ronney
,
P. D.
,
Zhan
,
Z.
, and
Barnett
,
S. A.
, 2005, “
A Thermally Self-Sustained Micro Solid-Oxide Fuel Cell With High Power Density
,”
Nature (London)
0028-0836,
435
, pp.
795
798
.
6.
Hibino
,
T.
,
Hashimoto
,
A.
,
Inoue
,
T.
,
Tokuno
,
J.
,
Yoshida
,
S.
, and
Sano
,
M.
, 2000, “
A Low-Operating-Temperature Solide Oxide Fuel Cell in Hydrocarbon-Air Mixtures
,”
Science
0036-8075,
288
, pp.
2031
2033
.
7.
Yano
,
M.
,
Tomita
,
A.
,
Sano
,
M.
, and
Hibino
,
T.
, 2007, “
Recent Advances in Single-Chamber Solid Oxide Fuel Cells: A Review
,”
Solid State Ionics
0167-2738,
177
, pp.
3351
3359
.
8.
Shao
,
Z. P.
, and
Haile
,
S. M.
, 2004, “
High-Performance Cathode for the Next Generation Solid-Oxide Fuel Cells
,”
Nature (London)
0028-0836,
431
, pp.
170
173
.
9.
Ahn
,
J.
,
Eastwood
,
C.
,
Sitzki
,
L.
, and
Ronney
,
P. D.
, 2005, “
Gas-Phase and Catalytic Combustion in Heat-Recirculating Burners
,”
Proc. Combust. Inst.
,
30
, pp.
2463
2472
. 1540-7489
10.
Maruta
,
K.
,
Takeda
,
K.
,
Ahn
,
J.
,
Borer
,
K.
,
Sitzki
,
L.
,
Ronney
,
P.
, and
Deutschman
,
O.
, 2002, “
Extinction Limits of Catalytic Combustion in Microchannels
,”
Proc. Combust. Inst.
,
29
, pp.
957
963
. 1540-7489
11.
Shao
,
Z. P.
,
Kwak
,
C.
, and
Haile
,
S. M.
, 2004, “
Anode-Supported Thin-Film Fuel Cells Operated in a Single Chamber Configuration
,”
Solid State Ionics
0167-2738,
175
, pp.
39
46
.
12.
Shao
,
Z.
,
Mederos
,
J.
,
Chueh
,
W. C.
, and
Haile
,
S. M.
, 2006, “
High Power Density Single Chamber Fuel Cells Operated on Methane
,”
J. Power Sources
,
162
, pp.
589
596
. 0378-7753
13.
Hao
,
Y.
,
Shao
,
Z. P.
,
Mederos
,
J.
,
Lai
,
W.
,
Goodwin
,
D. G.
, and
Haile
,
S. M.
, 2006, “
Recent Advances in Single-Chamber Fuel-Cells: Experiment and Modeling
,”
Solid State Ionics
0167-2738,
177
, pp.
2013
2021
.
You do not currently have access to this content.