Catalonia (Spain) has a significant potential of biogas production from agricultural activities and municipal waste. In addition, there are plenty of industrial cogeneration plants, but most of them use conventional fuels, such as natural gas, and conventional energy conversion devices, such as internal combustion engines. Molten carbonate fuel cells are ultraclean and highly efficient power generator devices capable of converting biogas into electricity and heat. Located in Lleida (Catalonia), Nufri is a fruit processing company with a long tradition on biogas production and cogeneration, with an installed capacity bigger than 45 MW. This study analyzes the economic viability of a fuel cell operating on biogas in Spain, on a real case basis (Nufri). Different fuel cell capacities are analyzed (from 300 kW to 1200 kW). A parametric study of different fuel cell prices ($/kW installed) is performed. Additional biogas cleanup requirements are taken into account. The results are based on the Spanish legislation, which establishes a special legal framework that grants favorable, technology-dependent feed-in premiums for renewable energy and cogeneration. Results show that the payback period ranges from 5 years to 8 years depending on the fuel cell capacity and installation price.

1.
Spiegel
,
R. J.
, and
Preston
,
J. L.
, 2003, “
Technical Assessment of Fuel Cell Operation on Landfill Gas at the Groton, CT, Landfill
,”
Energy
0360-5442,
28
, pp.
397
409
.
2.
Pandya
J. D.
,
Ghosh
K. K.
, and
Rastog
S. K.
, 1988, “
A Phosphoric Acid Fuel Cell Coupled With Biogas
,”
Energy
0360-5442,
13
(
4
), pp.
383
388
.
3.
Ascoli
,
A.
,
Pandya
,
J. D.
, and
Redaelli
,
G.
, 1989, “
Electrical Characterization of a 2.5 kW Phosphoric Acid Fuel Cell Stack Operating on Simulated Reformed Biogas
,”
Energy
0360-5442,
14
(
12
), pp.
875
878
.
4.
Spiegel
,
R. J.
,
Preston
,
J. L.
, and
Trocciola
,
J. C.
, 1997, “
Test Results for Fuel Cell Operation on Landfill Gas
,”
Energy
0360-5442,
22
(
8
), pp.
777
786
.
5.
Spiegel
,
R. J.
,
Preston
,
J. L.
, and
Trocciola
,
J. C.
, 1999, “
Fuel Cell Operation on Landfill Gas at Penrose Power Station
,”
Energy
0360-5442,
24
, pp.
723
742
.
6.
Chawla
,
S. K.
, and
Ghosh
,
K. K.
, 1992, “
Thermodynamic Analysis of Hydrogen Production From Biogas Phosphoric Acid Fuel Cell
,”
Int. J. Hydrogen Energy
0360-3199,
17
(
6
), pp.
405
412
.
7.
Naumann
,
S. T.
, and
Myrkn
,
C.
, 1995, “
Fuel Processing of Biogas for Small Fuel Cell Power Plants
,”
J. Power Sources
0378-7753,
56
, pp.
45
49
.
8.
Spiegel
,
R. J.
, and
Preston
,
J. L.
, 2000, “
Test Results for Fuel Cell Operation on Anaerobic Digester Gas
,”
J. Power Sources
0378-7753,
86
, pp.
283
288
.
9.
Katikaneni
,
S.
,
Yuh
,
C.
,
Avenís
,
S.
, and
Farooque
,
M.
, 2002, “
The Direct Carbonate Fuel Cell Technology: Advances in Multi-Fuel Processing and Internal Reforming
,”
Catal. Today
0920-5861,
77
, pp.
99
106
.
10.
2000–2004, “
EU RTD Project: Holistic Integration of MCFC Technology Towards a Most EFFECTIVE Systems Compound Using Biogas as Renewable Source of Energy
,” Contract No. ERK5-CT-1999-00007.
11.
Trogisch
,
S.
,
Hoffmann
,
J.
, and
Daza Bertrand
,
L.
, 2005, “
Operation of Molten Carbonate Fuel Cells With Different Biogas Sources: A Challenging Approach for Field Trials
,”
J. Power Sources
0378-7753,
145
, pp.
632
638
.
12.
Bove
,
R.
, and
Lunghi
,
P.
, 2005, “
Experimental Comparison of MCFC Performance Using Three Different Biogas Types and Methane
,”
J. Power Sources
0378-7753,
145
, pp.
588
593
.
13.
Staniforth
,
J.
, and
Kendall
,
K.
, 1998, “
Biogas Powering a Small Tubular Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
71
, pp.
275
277
.
14.
Staniforth
,
J.
, and
Kendall
,
K.
, 2000, “
Cannock Landfill Gas Powering a Small Tubular Solid Oxide Fuel Cell—A Case Study
,”
J. Power Sources
0378-7753,
86
, pp.
401
403
.
15.
Van herle
,
J.
,
Maréchal
,
F.
,
Leuenberger
,
S.
, and
Favrat
,
D.
, 2003, “
Energy Balance Model of a SOFC Cogenerator Operated With Biogas
,”
J. Power Sources
0378-7753,
118
, pp.
375
383
.
16.
Van herle
,
J.
,
Maréchal
,
F.
,
Leuenberger
,
S.
,
Membrez
,
Y.
,
Bucheli
,
O.
, and
Favrat
,
D.
, 2004, “
Process Flow Model of Solid Oxide Fuel Cell System Supplied With Sewage Biogas
,”
J. Power Sources
0378-7753,
131
, pp.
127
141
.
17.
Van herle
,
J.
,
Membrez
,
Y.
, and
Bucheli
,
O.
, 2004, “
Biogas as a Fuel Source for SOFC Co-Generators
,”
J. Power Sources
0378-7753,
127
, pp.
300
312
.
18.
Yentekakis
,
I. V.
, 2006, “
Open- and Closed-Circuit Study of an Intermediate Temperature SOFC Directly Fueled With Simulated Biogas Mixtures
,”
J. Power Sources
0378-7753,
160
, pp.
422
425
.
19.
Zhang
,
Z. -G.
,
Xu
,
G.
,
Chen
,
X.
,
Honda
,
K.
, and
Yoshida
,
T.
, 2004, “
Process Development of Hydrogenous Gas Production for PEFC From Biogas
,”
Fuel Process. Technol.
0378-3820,
85
, pp.
1213
1229
.
20.
Schmersahl
,
R.
, and
Scholz
,
V.
, 2005, “
Testing a PEM Fuel Cell System With Biogas Fuel
,” Institute of Agricultural Engineering Bornim e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
21.
2007, “
Feasibility and Viability Analysis of the Use of Biogas in Fuel Cells in Catalonia
,” California-Catalonia Program for Engineering Innovation.
22.
Cruz
,
A. J.
,
Pires
,
J.
,
Carvalho
,
A. P.
, and
Brotas de Carvalho
,
M.
, 2005, “
Physical Adsorption of H2S Related to the Conservation of Works of Art: The Role of the Pore Structure at Low Relative Pressure
,”
Adsorption
0929-5607,
11
, pp.
569
576
.
23.
Garcia
,
C. L.
, and
Lercher
,
J. A.
, 1992, “
Adsorption of Hydrogen Sulfide on ZSM 5 Zeolites
,”
J. Phys. Chem.
0022-3654,
96
(
5
), pp.
2230
2235
.
24.
Yaşyerli
,
S.
,
Ar
,
İ.
,
Doğu
,
G.
, and
Doğu
,
T.
, 2002, “
Removal of Hydrogen Sulfide by Clinoptilolite in a Fixed Bed Adsorber
,”
Chem. Eng. Process.
0255-2701,
41
(
9
), pp.
785
792
.
25.
Young
,
Y.
,
Yang
,
K.
,
Young
,
W. H.
, and
Seff
,
K.
, 1996, “
Crystal Structure of a Hydrogen Sulfide Sorption Complex of Zeolite LTA
,”
Zeolites
0144-2449,
17
(
5–6
), pp.
495
500
.
26.
Xu
,
X.
,
Novochinskii
,
I.
, and
Song
,
C.
, 2005, “
Low-Temperature Removal of H2S by Nanoporous Composite of Polymer-Mesoporous Molecular Sieve MCM-41 as Adsorbent for Fuel Cell Applications
,”
Energy Fuels
0887-0624,
19
(
5
), pp.
2214
2215
.
27.
Margalef
,
P.
, 2007, “
The Integration of a High Temperature Fuel Cell and Absorption Chiller Into a Generic Building
,” MS thesis, Advance Power and Energy Program, University of California, Irvine, CA.
28.
Larminie
,
J.
and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
Wiley
,
West Sussex, UK
.
You do not currently have access to this content.