Carbon-supported PtTiO2(PtTiO2/C) catalyst with varying atomic ratio of Pt to Ti, namely, 1:1, 2:1, and 3:1, is prepared by sol-gel method and its electrocatalytic activity toward oxygen-reduction reaction (ORR) is evaluated for the application in polymer electrolyte fuel cells (PEFCs). The optimum atomic ratio of Pt to Ti in PtTiO2/C and annealing temperature are established by cyclic voltammetry and fuel-cell-polarization studies. PtTiO2/C annealed at 750°C with Pt and Ti in atomic ratio of 2:1, namely, 750PtTiO2/C (2:1), shows enhanced electrocatalytic activity toward ORR. It is found that the incorporation of TiO2 with Pt ameliorates both electrocatalytic activity and stability of cathode in relation to pristine Pt cathode, currently being used in PEFCs. A power density of 0.75W/cm2 is achieved at 0.6 V for the PEFC with 750PtTiO2/C (2:1) as compared with 0.62W/cm2 at 0.6 V achieved with the PEFC comprising Pt/C as cathode catalyst while operating under identical conditions. Interestingly, carbon-supported PtTiO2 cathode exhibits only 6% loss in electrochemical surface area after 5000 potential cycles while it is as high as 25% for Pt/C.

1.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell System Explained
,
Wiley
,
England
.
2.
Barbir
,
F.
, 2005,
PEM Fuel Cells, Theory, and Practice
,
Elsevier Academic
,
London
.
3.
Bockris
,
J. O. M.
, and
Srinivasan
,
S.
, 1969,
Fuel Cells: Their Electrochemistry
,
McGraw-Hill
,
New York
.
4.
Antolini
,
E.
,
Salgado
,
J. R. C.
, and
Gonzalez
,
E. R.
, 2005, “
Carbon Supported Pt75M25 (M=Co,Ni) Alloys as Anode and Cathode Electrocatalysts for Direct Methanol Fuel Cell
,”
J. Electroanal. Chem.
0022-0728,
580
(
1
), pp.
145
154
.
5.
Lima
,
F. H. B.
,
Lizcano-Valbuena
,
W. H.
,
Teixeira-Neto
,
E.
,
Nart
,
F. C.
,
Gonzalez
,
E. R.
, and
Ticianelli
,
E. A.
, 2006, “
Pt–Co/C Nanoparticles as Electrocatalysts for Oxygen Reduction in H2SO4 and H2SO4/CH3OH Electrolytes
,”
Electrochim. Acta
0013-4686,
52
(
2
), pp.
385
393
.
6.
Yuan
,
W.
,
Scott
,
K.
, and
Cheng
,
H.
, 2006, “
Fabrication and Evaluation of Pt–Fe Alloys as Methanol Tolerant Cathode Materials for Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
163
(
1
), pp.
323
329
.
7.
Gong
,
Y.
,
Yeboah
,
Y. D.
,
Lvov
,
S. N.
,
Balashov
,
V.
, and
Wang
,
Z.
, 2007, “
Fe-Modified, Pt-Based Cathodic Electrocatalysts for Oxygen Reduction Reaction With Enhanced Methanol Tolerance Reduction Reaction With Enhanced Methanol Tolerance
,”
J. Electrochem. Soc.
0013-4651,
154
(
6
), pp.
B560
B565
.
8.
Selvarani
,
G.
,
Vinod Selvaganesh
,
S.
,
Krishnamurty
,
S.
,
Kiruthika
,
G. V. M.
,
Sridhar
,
P.
,
Pitchumani
,
S.
, and
Shukla
,
A. K.
, 2009, “
A Methanol-Tolerant Carbon-Supported Pt–Au Alloy Cathode Catalyst for Direct Methanol Fuel Cells and Its Evaluation by DFT
,”
J. Phys. Chem. C
1932-7447,
113
(
17
), pp.
7461
7468
.
9.
Shao
,
M. H.
,
Huang
,
T.
,
Liu
,
P.
,
Zhang
,
J.
,
Sasaki
,
K.
,
Vukmirovic
,
M. B.
, and
Adzic
,
R. R.
, 2006, “
Palladium Monolayer and Palladium Alloy Electrocatalysts for Oxygen Reduction
,”
Langmuir
0743-7463,
22
(
25
), pp.
10409
10415
.
10.
Selvarani
,
G.
,
Sahu
,
A. K.
,
Kiruthika
,
G. V. M.
,
Sridhar
,
P.
,
Pitchumani
,
S.
, and
Shukla
,
A. K.
, 2009, “
PEFC Electrode With Enhanced Three-Phase Contact and Built-In Supercapacitive Behavior
,”
J. Electrochem. Soc.
0013-4651,
156
(
1
), pp.
B118
B125
.
11.
Shim
,
J.
,
Lee
,
C. R.
,
Lee
,
H. K.
,
Lee
,
J. S.
, and
Cairns
,
E. J.
, 2001, “
Electrochemical Characteristics of Pt–WO3/C and Pt–TiO2/C Electrocatalysts in a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
102
(
1–2
), pp.
172
177
.
12.
Neophytides
,
S. G.
,
Murase
,
K.
,
Zafeiratos
,
S.
,
Papakonstantinou
,
G.
,
Paloukis
,
F. E.
,
Krstajic
,
N. V.
, and
Jaksic
,
M. M.
, 2006, “
Composite Hypo-Hyper-d-Intermetallic and Interionic Phases as Supported Interactive Electrocatalysts
,”
J. Phys. Chem. B
1089-5647,
110
, pp.
3030
3042
.
13.
Brewer
,
L.
, 1968, “
Bonding and Structures of Transition Metals Science
,”
Science
0036-8075,
161
(
3837
), pp.
115
122
.
14.
Brewer
,
L.
, 1965,
High-Strength Materials
,
V. F.
Zackay
, ed.,
Wiley
,
New York
, pp.
12
103
.
15.
Brewer
,
L.
, 1967,
Phase Stability in Metals and Alloys
,
P.
Rudman
,
J.
Stringer
, and
R. I.
Haffee
, eds.,
McGraw-Hill
,
New York
, pp.
39
61
.
16.
Friedel
,
J.
, 1969,
The Physics of Metals, I. Electrons
,
J. M.
Ziman
, ed.,
Cambridge University Press
,
Cambridge, UK
, pp.
340
403
.
17.
de Boer
,
F. R.
,
Boom
,
R.
,
Mattens
,
W. C. M.
,
Miedema
,
A. R.
, and
Niessen
,
A. K.
, 1988,
Cohesion and Structure, Cohesion in Metals, Transition Metal Alloys
,
F. R.
de Boer
and
D. G.
Pettifor
, eds.,
North-Holland
,
Amsterdam, The Netherlands
, Vol.
1
, pp.
99
123
.
18.
Jaksic
,
J. M.
,
Lacnjevac
,
C. M.
,
Krstajic
,
N. V.
, and
Jaksic
,
M. M.
, 2008, “
Interactive Supported Electrocatalyst and Spillover Effect in Electrocatalysis for Hydrogen and Oxygen Electrode Reactions
,”
Chemical Industry & Chemical Engineering Quarterly
,
14
(
2
), pp.
119
136
.
19.
Ioroi
,
T.
,
Siroma
,
Z.
,
Fujiwara
,
N.
,
Yamazaki
,
S.
, and
Yasuda
,
K.
, 2005, “
Sub-Stoichiometric Titanium Oxide-Supported Platinum Electrocatalyst for Polymer Electrolyte Fuel Cells
,”
Electrochem. Commun.
1388-2481,
7
(
2
), pp.
183
188
.
20.
Chen
,
J. M.
,
Sarma
,
L. S.
,
Chen
,
C. H.
,
Cheng
,
M. Y.
,
Shih
,
S. C.
,
Wang
,
G. R.
,
Liu
,
D. G.
,
Lee
,
J. F.
,
Tang
,
M. T.
, and
Hwang
,
B. J.
, 2006, “
Multi-Scale Dispersion in Fuel Cell Anode Catalysts, Role of TiO2 Towards Achieving Nanostructured Materials
,”
J. Power Sources
0378-7753,
159
(
1
), pp.
29
33
.
21.
Gustavsson
,
M.
,
Ekström
,
H.
,
Hanarp
,
P.
,
Eurenius
,
L.
,
Lindbergh
,
G.
,
Olsson
,
E.
, and
Kasemo
,
B.
, 2007, “
Thin Film Pt/TiO2 Catalysts for the Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
163
(
2
), pp.
671
678
.
22.
Rajalakshmi
,
N.
,
Lakshmi
,
N.
, and
Dhathathreyan
,
K. S.
, 2008, “
Nano Titanium Oxide Catalyst Support for Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
33
(
24
), pp.
7521
7526
.
23.
Lim
,
D. H.
,
Lee
,
W. J.
,
Macy
,
N. L.
, and
Smyrl
,
W. H.
, 2009, “
Electrochemical Durability Investigation of Pt/TiO2 Nanotube Catalysts for Polymer Electrolyte Membrane Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
12
(
9
), pp.
B123
B125
.
24.
Huang
,
S. Y.
,
Ganesan
,
P.
,
Park
,
S.
, and
Popov
,
B. N.
, 2009, “
Development of a Titanium Dioxide-Supported Platinum Catalyst With Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications
,”
J. Am. Chem. Soc.
0002-7863,
131
(
39
), pp.
13898
13899
.
25.
Xiong
,
L.
, and
Manthiram
,
A.
, 2004, “
Synthesis and Characterization of Methanol Tolerant Pt/TiOx/C Nanocomposites for Oxygen Reduction in Direct Methanol Fuel Cells
,”
Electrochim. Acta
0013-4686,
49
(
24
), pp.
4163
4170
.
26.
Sambandam
,
S.
,
Valluri
,
V.
,
Chanmanee
,
W.
,
de Tacconi
,
N. R.
,
Wampler
,
W. A.
,
Lin
,
W. -Y.
,
Carlson
,
T. F.
,
Ramani
,
V.
, and
Rajeshwar
,
K.
, 2009, “
Platinum-Carbon Black Titanium Dioxide Nanocomposite Electrocatalyst for Fuel Cell Applications
,”
J. Chem. Sci.
0253-4134,
121
(
5
), pp.
655
664
.
27.
Borup
,
R. L.
,
Davey
,
J. R.
,
Garzon
,
F. H.
,
Wood
,
D. L.
, and
Inbody
,
M. A.
, 2006, “
PEM Fuel Cell Electrocatalyst Durability Measurements
,”
J. Power Sources
0378-7753,
163
(
1
), pp.
76
81
.
28.
Ferreira
,
P. J.
,
la O’
,
G. J.
,
Shao-Horn
,
Y.
,
Morgan
,
D.
,
Makharia
,
R.
,
Kocha
,
S.
, and
Gasteiger
,
H. A.
, 2005, “
Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
(
11
), pp.
A2256
A2271
.
29.
Selvarani
,
G.
,
Maheswari
,
S.
,
Sridhar
,
P.
,
Pitchumani
,
S.
, and
Shukla
,
A. K.
, 2009, “
Carbon-Supported Pt–TiO2 as a Methanol-Tolerant Oxygen-Reduction Catalyst for DMFCs
,”
J. Electrochem. Soc.
0013-4651,
156
(
11
), pp.
B1354
B1360
.
30.
Kim
,
H. J.
,
Kim
,
D. Y.
,
Han
,
H.
, and
Shul
,
Y. G.
, 2006, “
PtRu/C–Au/TiO2 Electrocatalyst for a Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
159
(
1
), pp.
484
490
.
31.
Selvarani
,
G.
,
Sahu
,
A. K.
,
Choudhury
,
N. A.
,
Sridhar
,
P.
,
Pitchumani
,
S.
, and
Shukla
,
A. K.
, 2007, “
A Phenyl-Sulfonic Acid Anchored Carbon-Supported Platinum Catalyst for Polymer Electrolyte Fuel Cell Electrodes
,”
Electrochim. Acta
0013-4686,
52
(
15
), pp.
4871
4877
.
32.
Boyer
,
C.
,
Gamburzev
,
S.
,
Velev
,
O.
,
Srinivasan
,
S.
, and
Appleby
,
A. J.
, 1998, “
Measurements of Proton Conductivity in the Active Layer of PEM Fuel Cell Gas Diffusion Electrodes
,”
Electrochim. Acta
0013-4686,
43
(
24
), pp.
3703
3709
.
33.
Kawasoe
,
Y.
,
Tanaka
,
S.
,
Kuroki
,
T.
,
Kusaba
,
H.
,
Ito
,
K.
,
Teraoka
,
Y.
, and
Sasaki
,
K.
, 2007, “
Preparation and Electrochemical Activities of Pt–Ti Alloy PEFC Electrocatalysts
,”
J. Electrochem. Soc.
0013-4651,
154
(
9
), pp.
B969
B975
.
34.
Beard
,
B. C.
, and
Ross
,
P. N.
, 1986, “
Characterization of a Titanium-Promoted Supported Platinum Electrocatalyst
,”
J. Electrochem. Soc.
0013-4651,
133
(
9
), pp.
1839
1845
.
35.
Jones
,
C.
, and
Sammann
,
E.
, 1990, “
The Effect of Low Power Plasmas on Carbon Fibre Surfaces
,”
Carbon
0008-6223,
28
(
4
), pp.
509
514
.
36.
Stypula
,
B.
, and
Stoch
,
J.
, 1994, “
The Characterization of Passive Films on Chromium Electrodes by XPS
,”
Corros. Sci.
0010-938X,
36
(
12
), pp.
2159
2167
.
You do not currently have access to this content.